Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36981253

ABSTRACT

Rapeseed meal (RSM), a by-product of rapeseed oil extraction, is currently used for low-value purposes. With a biorefinery approach, rapeseed proteins may be extracted and recovered for high-end uses to fully exploit their nutritional and functional properties. This study reports the application of RSM protein isolate, the main output of a biorefining process aimed at recovering high-value molecules from rapeseed meal, as a supplement to texture-modified (TM) food designed for elderly people with mastication and dysphagia problems. The compositional (macronutrients by Official Methods of Analyses, and mineral and trace element profiles using Inductively Coupled Plasma Optical Emission Spectrometry ICP-OES), nutritional and sensory evaluations of TM chicken breast, carrots and bread formulated without and with RSM protein supplementation (5% w/w) are hereby reported. The results show that the texture modification of food combined with rapeseed protein isolate supplementation has a positive impact on the nutritional and sensory profile of food, meeting the special requirements of seniors. TM chicken breast and bread supplemented with RSM protein isolate showed unaltered or even improved sensory properties and a higher nutrient density, with particular regard to proteins (+20-40%) and minerals (+10-16%). Supplemented TM carrots, in spite of the high nutrient density, showed a limited acceptability, due to poor sensory properties that could be overcome with an adjustment to the formulation. This study highlights the potentialities of RSM as a sustainable novel protein source in the food sector. The application of RSM protein proposed here is in line with the major current challenges of food systems such as the responsible management of natural resources, the valorization of agri-food by-products, and healthy nutrition with focus on elderly people.

2.
Molecules ; 26(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34833884

ABSTRACT

Rapeseed meal (RSM), a by-product of oilseed extraction connected to the agri-food and biofuel sectors, is currently used as animal feed and for other low-value purposes. With a biorefinery approach, RSM could be valorized as a source of bio-based molecules for high-value applications. This study provides a chemical characterization of RSM in the perspective of its valorization. A qualitative study of main functional groups by fourier transform infrared (FTIR) spectroscopy was integrated with a chemical characterization of macronutrients, minerals by inductively coupled plasma optical emission spectrometry (ICP-OES), phenolic acids and lipid components by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), HPLC-diode-array detector (HPLC-DAD) and gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID). The study, conducted on different lots of RSM collected over a one-year period from an oil pressing factory serving a biofuel biorefinery, highlighted a constant quality over time of RSM, characterized by high protein (31-34%), fiber (33-40%) and mineral (5.5-6.8%) contents. Polyphenol extracts showed a significant antioxidant activity and a prevalence of sinapic acid, accounting for more than 85% of total phenolic acids (395-437 mg kg-1 RSM). Results highlight the potentialities of RSM for further valorization strategies that may lead to the creation of new cross-sector interconnections and bio-based value chains with improvement of the economics and sustainability of the bioeconomy sectors involved.


Subject(s)
Brassica napus/chemistry , Industrial Waste/analysis , Waste Management/methods , Animal Feed/analysis , Antioxidants/chemistry , Biofuels/analysis , Brassica napus/metabolism , Gas Chromatography-Mass Spectrometry/methods , Industrial Waste/economics , Minerals/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Tandem Mass Spectrometry/methods , Waste Products/analysis
3.
Foods ; 9(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276511

ABSTRACT

This paper reports data from a characterization study conducted on the unsaponifiable lipid fraction of dry-grind corn bioethanol side streams. Phytosterols, squalene, tocopherols, tocotrienols, and carotenoids were quantified by High Performance Liquid Chromatography with Diode-Array Detector (HPLC-DAD) and Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) in different lots of post-fermentation corn oil and thin stillage collected from a bioethanol plant over a time-span of one year. Fat-soluble bioactives were present at high levels in corn oil, with a prevalence of plant sterols over tocols and squalene. Beta-sitosterol and sitostanol accounted altogether for more than 60% of total sterols. The carotenoid profile was that typical of corn, with lutein and zeaxanthin as the prevalent molecules. The unsaponifiable lipid fraction profile of thin stillage was qualitatively similar to that of post-fermentation corn oil but, in quantitative terms, the amounts of valuable biomolecules were much lower because of the very high dilution of this side stream. Results indicate that post-fermentation corn oil is a promising and sustainable source of health-promoting bioactive molecules. The concomitant presence of a variegate complex of bioactive molecules with high antioxidant potentialities and their potential multifaceted market applications as functional ingredients for food, nutraceutical, and cosmeceutical formulations, make the perspective of their recovery a promising strategy to create new bio-based value chains and maximize the sustainability of corn dry-grind bioethanol biorefineries.

4.
Molecules ; 25(15)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756471

ABSTRACT

First-generation biofuel biorefineries may be a starting point for the development of new value chains, as their by-products and side streams retain nutrients and valuable molecules that may be recovered and valorized for high-value applications. This study provides a chemical characterization of post-fermentation corn oil and thin stillage, side streams of dry-grind corn bioethanol production, in view of their valorization. An overall long-term study was conducted on the two co-products collected over 1 year from a bioethanol plant. Water content, acid value, sedimentation, mineral composition, and fatty acid profiles were analyzed on post-fermentation corn oil. Results highlighted that its acid value was high (19.72-24.29 mg KOH/g), indicating high levels of free fatty acids, but stable over the year due to standardized operating conditions. The fatty acid profile was that typical of corn oil, with a prevalence of linoleic (54-59% of total fatty acids) over oleic (23-27%) and palmitic (12-17%) acids. Macronutrients, fatty acid, and mineral profiles were investigated in thin stillage. Results revealed the acidic pH (4.05-4.68) and high dilution (90-93% water) of this side stream. The dry mass was composed of fats (19-30%), proteins (8.8-12.8%), ash (8.7-9.5%), and fiber (7.3-9.8%). The concomitant presence of a variegate complex of molecules of nutritional interest in corn bioethanol co-products, with several potential high-value market applications, make the perspective of their recovery a promising strategy to create new cross-sector interconnections according to circular economy principles.


Subject(s)
Biofuels , Corn Oil/metabolism , Zea mays/metabolism , Batch Cell Culture Techniques , Corn Oil/chemistry , Hydrogen-Ion Concentration , Linoleic Acid/analysis , Minerals/analysis , Oleic Acid/analysis , Palmitic Acid/analysis , Zea mays/chemistry
5.
Foods ; 9(1)2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31877706

ABSTRACT

The primary product of the oenological sector is wine. Nonetheless, the grape processing produces large amounts of by-products and wastes, e.g., the grape seeds. In the context of a sustainable production, there is a strong push towards reutilizing these by-products and waste for making useful derivatives since they are rich of bioactive substances with high additional value. As it is true for the wine itself, bringing these by-products derivatives to the market calls for quality measures and analytical tools to assess quality itself. One of the main objectives is to collect analytical data regarding bioactive compounds using potentially green techniques. In the present work, the profile of fatty acids and the main phenolic compounds were investigated by conventional methods. The qualitative analysis of the main functional groups was carried out by Fourier Transform Infrared (FTIR) spectroscopy. Moreover, the successful use of FTIR technique in combination with chemometric data analysis is shown to be a suitable analytical tool for discriminating the grape seeds. Grape seeds of different origin have different content of bioactive substances, making this technique useful when planning to recover a certain substance with specific potential application in health area as food supplement or nutraceutical. For example, Cesanese d'Affile seeds were found to have a rather high fat content with a significant fraction of unsaturated fatty acids. On the other hand, the seeds of Nero d'Avola exhibit the highest amount of phenolic compounds.

6.
Food Chem ; 301: 125252, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31374532

ABSTRACT

The efficacy of two sodium reduction strategies in preserving sensory profile and consumer liking of yeasted wheat bread was tested, by combining sensory data, aroma compounds and consumer investigations. The use of (i) a reduced-sodium salt substitute, Pansalt® (NaCl 57%, other salts and minor ingredients) at 1.5%, and (ii) the heterogeneous NaCl distribution (average level of 1%) leading to enhanced saltiness by taste contrast, were compared with standard (1.5%) and reduced (1.0%) addition of NaCl. The heterogeneous NaCl distribution was effective in preserving saltiness. Salt substitution with Pansalt® was less effective but preserved the overall flavour. Higher amount of Maillard reaction volatile products, associated with more intense toasted odour of the crust, was found in breads with higher NaCl content. The consumer survey highlighted satisfactory results of Pansalt® use for 58% of the respondents (equal or higher liking and purchase intention). Heterogeneous salt distribution was effective for 31% of consumers.


Subject(s)
Bread/analysis , Sodium Chloride, Dietary/analysis , Taste , Triticum/chemistry , Volatile Organic Compounds/chemistry , Consumer Behavior , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...