Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Waste Manag ; 174: 451-461, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38113670

ABSTRACT

Two samples of spent tire rubber (rubber A and rubber B) were submitted to thermochemical conversion by pyrolysis process. A450, B450 and A900, B900 chars were obtained from rubber A and rubber B at 450 °C and 900 °C, respectively. The chars were then applied as recovery agents of Nd3+ and Dy3+ from aqueous solutions in mono and bicomponent solutions, and their performance was benchmarked with a commercial activated carbon. The chars obtained at 900 °C were the most efficient adsorbents for both elements with uptake capacities around 30 mg g-1. The chars obtained at 450 °C presented uptake capacities similar to the commercial carbon (≈ 11 mg g-1). A900 and B900 chars presented a higher availability of Zn ions that favored the ion exchange mechanism. It was found that Nd3+ and Dy3+ were adsorbed as oxides after Zn was released from silicate structures (Zn2SiO4). A900 char was further selected to be tested with Nd/Dy binary mixtures and it was found a trend to adsorb a slightly higher amount of Dy3+ due to its smaller ionic radius. The uptake capacity in bicomponent solutions was generally higher than for single component solutions due to the higher driving force triggered by the higher concentration gradient.


Subject(s)
Metals, Rare Earth , Rubber , Rubber/chemistry , Charcoal/chemistry , Water , Adsorption
2.
Materials (Basel) ; 13(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32972003

ABSTRACT

An experimental and theoretical investigation on microwave plasma-based synthesis of free-standing N-graphene, i.e., nitrogen-doped graphene, was further extended using ethanol and nitrogen gas as precursors. The in situ assembly of N-graphene is a single-step method, based on the introduction of N-containing precursor together with carbon precursor in the reactive microwave plasma environment at atmospheric pressure conditions. A previously developed theoretical model was updated to account for the new reactor geometry and the nitrogen precursor employed. The theoretical predictions of the model are in good agreement with all experimental data and assist in deeper understanding of the complicated physical and chemical process in microwave plasma. Optical Emission Spectroscopy was used to detect the emission of plasma-generated ''building units'' and to determine the gas temperature. The outlet gas was analyzed by Fourier-Transform Infrared Spectroscopy to detect the generated gaseous by-products. The synthesized N-graphene was characterized by Scanning Electron Microscopy, Raman, and X-ray photoelectron spectroscopies.

3.
Sci Rep ; 10(1): 13013, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32747630

ABSTRACT

The ability to change the secondary electron emission properties of nitrogen-doped graphene (N-graphene) has been demonstrated. To this end, a novel microwave plasma-enabled scalable route for continuous and controllable fabrication of free-standing N-graphene sheets was developed. High-quality N-graphene with prescribed structural qualities was produced at a rate of 0.5 mg/min by tailoring the high energy density plasma environment. Up to 8% of nitrogen doping levels were achieved while keeping the oxygen content at residual amounts (~ 1%). The synthesis is accomplished via a single step, at atmospheric conditions, using ethanol/methane and ammonia/methylamine as carbon and nitrogen precursors. The type and level of doping is affected by the position where the N-precursor is injected in the plasma environment and by the type of precursors used. Importantly, N atoms incorporated predominantly in pyridinic/pyrrolic functional groups alter the performance of the collective electronic oscillations, i.e. plasmons, of graphene. For the first time it has been demonstrated that the synergistic effect between the electronic structure changes and the reduction of graphene π-plasmons caused by N doping, along with the peculiar "crumpled" morphology, leads to sub-unitary (< 1) secondary electron yields. N-graphene can be considered as a prospective low secondary electron emission and plasmonic material.

4.
Phys Chem Chem Phys ; 22(8): 4772-4787, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32066999

ABSTRACT

Free-standing N-graphene was synthesized using a microwave plasma-based method at atmospheric pressure conditions through a single step and in a controllable manner. Using ethanol and ammonia as precursors, N-graphene with low relative amount of bonded oxygen and low level of saturated sp3 carbon bonds was produced. Adjusting the injection position of the nitrogen precursor in the plasma medium leads to selectivity in terms of doping level, nitrogen configuration and production yield. A previously developed theoretical model, based on plasma thermodynamics and chemical kinetics, was further updated to account for the presence of nitrogen precursor. The important role of HCN attachment to the graphene sheets as the main process of N-graphene formation is elucidated. The model predictions were validated by experimental results. Optical Emission Spectroscopy was used to detect the emission of plasma generated "building units" and to determine the gas temperature. The plasma outlet gas was analyzed by Fourier-Transform Infrared Spectroscopy to detect the generated gaseous by-products. The synthesized N-graphene was characterized by Scanning Electron Microscopy, Raman and X-ray photoelectron spectroscopies.

5.
Int J Biol Macromol ; 128: 902-910, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30716374

ABSTRACT

The functionalization of cotton fabric with photoactive TiO2-Ag-AgBr nanostructured layer has been successfully developed using a low temperature non-aqueous sol-gel route and aqueous suspension of AgBr. Evidence for the growth of TiO2 layer and the immobilization of AgBr nanoparticles have been confirmed by Raman, XRD and XPS. GSDR analysis revealed a strong absorption in the visible region brought by surface Plasmon resonance (SPR) of Ag nanocrystals generated at the surface of AgBr. The XPS evidenced the presence of Ag+, Ag0 and bromine, suggesting that Ag0 formed a shell around the deposited AgBr. The immobilized TiO2-Ag-AgBr heterostructured layer imparts a strong photocatalytic activity under visible light for the degradation of dyes in aqueous solution as well as of dimethyl methylphosphonate (DMMP), a chemical warfare agent simulant. These new catalytically active functionalized fabrics, with self-detoxification properties, have great potential for application in chemical protective clothes and might offer new opportunities for the design of functional materials for toxic chemical protection.


Subject(s)
Bromides/chemistry , Coloring Agents/chemistry , Cotton Fiber , Organophosphates/chemistry , Photochemical Processes , Silver Compounds/chemistry , Silver/chemistry , Titanium/chemistry , Catalysis , Coloring Agents/isolation & purification , Nanostructures/chemistry , Organophosphates/isolation & purification , Organophosphates/toxicity , Temperature , Water/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification
6.
Sci Rep ; 8(1): 12595, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30135558

ABSTRACT

Direct assembling of N-graphene, i.e. nitrogen doped graphene, in a controllable manner was achieved using microwave plasmas at atmospheric pressure conditions. The synthesis is accomplished via a single step using ethanol and ammonia as carbon and nitrogen precursors. Tailoring of the high-energy density plasma environment results in a selective synthesis of N-graphene (~0.4% doping level) in a narrow range of externally controlled operational conditions, i.e. precursor and background gas fluxes, plasma reactor design and microwave power. Applying infrared (IR) and ultraviolet (UV) irradiation to the flow of free-standing sheets in the post-plasma zone carries out changes in the percentage of sp2, the N doping type and the oxygen functionalities. X-ray photoelectron spectroscopy (XPS) revealed the relative extension of the graphene sheets π-system and the type of nitrogen chemical functions present in the lattice structure. Scanning Electron microscopy (SEM), Transmission Electron microscopy (TEM) and Raman spectroscopy were applied to determine morphological and structural characteristics of the sheets. Optical emission and FT-IR spectroscopy were applied for characterization of the high-energy density plasma environment and outlet gas stream. Electrochemical measurements were also performed to elucidate the electrochemical behavior of NG for supercapacitor applications.

7.
Carbohydr Polym ; 199: 31-40, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30143134

ABSTRACT

Aiming the degradation of harmful molecules under visible light, new photocatalytic systems were created. For this purpose, the surface of chitosan thin films was modified in heterogeneous phase via a simple and straightforward mild chemical process: chemisorption of silver ions followed by the synthesis in situ of TiO2 at low temperature (100 °C). A high photocatalytic activity under visible light was observed, leading to the degradation and/or mineralization of different organic products such as o-toluidine, salicylic acid and 4-aminomethyl benzoic acid. This efficiency is partly attributed to the formation of Ag NPs and also to the unexpected appearance of AgCl NPs, likely formed from the residual chlorine contained in the chitosan. The resulting TiO2/Ag/AgCl/Chitosan system is easy to prepare under mild conditions, avoiding calcination treatments and opens new perspectives for the production of visible light-driven photocatalysts. Samples were analysed by different techniques: XRD, Raman, FE-SEM, XPS, TGA, GSDR, LIF and LIP.

8.
Carbohydr Polym ; 176: 336-344, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28927616

ABSTRACT

A simple approach to functionalize cotton fabrics with Au and TiO2 nanostructured layer is presented. Hybrid fabrics (Cot-Au-TiO2) are prepared through reduction of AuCl4- on cotton, followed by a non-aqueous sol-gel procedure using tetrabutyltitanate and a hydrothermal treatment at 110°C. The generation of crystalline TiO2 is confirmed by Raman spectroscopy. The fibres morphology and their roughness are characterized by AFM and FE-SEM. XPS shows how the concentration of the NPs precursors (Au and TiO2) affects the layer composition. GSDR (Ground State Diffuse Reflectance Absorption Spectroscopy) and LIL (Laser induced luminescence) reveal a strong quenching effect induced by Au NPs. Photocatalytic activity measured through the Remazol Blue (RB) degradation reveals an enhancement under visible light, which increases with Au loading. This strong enhancement is explained through the surface plasmon resonance brought by Au NPs.

9.
Sci Rep ; 7(1): 10175, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860575

ABSTRACT

One of the greatest challenges in the commercialization of graphene and derivatives is production of high quality material in bulk quantities at low price and in a reproducible manner. The very limited control, or even lack of, over the synthesis process is one of the main problems of conventional approaches. Herein, we present a microwave plasma-enabled scalable route for continuous, large-scale fabrication of free-standing graphene and nitrogen doped graphene sheets. The method's crucial advantage relies on harnessing unique plasma mechanisms to control the material and energy fluxes of the main building units at the atomic scale. By tailoring the high energy density plasma environment and complementarily applying in situ IR and soft UV radiation, a controllable selective synthesis of high quality graphene sheets at 2 mg/min yield with prescribed structural qualities was achieved. Raman spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, X-ray photoelectron spectroscopy and Near Edge X-ray-absorption fine-structure spectroscopy were used to probe the morphological, chemical and microstructural features of the produced material. The method described here is scalable and show a potential for controllable, large-scale fabrication of other graphene derivatives and promotes microwave plasmas as a competitive, green, and cost-effective alternative to presently used chemical methods.

10.
Carbohydr Polym ; 141: 229-37, 2016 May 05.
Article in English | MEDLINE | ID: mdl-26877017

ABSTRACT

A green, safe and fast procedure is presented for in situ generation of nanoparticles (NPs) of cuprous oxide (Cu2O) onto cotton fibres at room temperature using water as a solvent. The method is based on a mild surface oxidation of cellulose fibres to generate in a controlled way carboxylic groups acting as a binding site for the adsorption of Cu(2+) via electrostatic coordination. Then, the adsorbed Cu(2+) ions were readly converted into Cu2O by dipping the treated cotton fibres into a aqueous solution of a reducing agent. Field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), as well as UV-vis absorption and emission spectroscopic methods were used to analyse the size, morphology, chemical composition and the crystalline structure of the generated nanoparticles on the fabrics. The morphology of the ensuing Cu2O nanoparticles was shown to be dependent on the reduycing agent used. Antibacterial properties of the modified fibres were also investigated.


Subject(s)
Anti-Bacterial Agents/chemistry , Copper/chemistry , Cotton Fiber , Metal Nanoparticles/chemistry , Cellulose/analogs & derivatives , Green Chemistry Technology/methods , Oxidation-Reduction
11.
Microsc Microanal ; 21 Suppl 5: 13-4, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26227687
12.
J Phys Chem B ; 119(17): 5404-11, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25844940

ABSTRACT

This work stresses on damage at the molecular level caused by ultraviolet radiation (UV) in the range from 3.5 to 8 eV, deoxyribonucleic acid (DNA) films observed by X-ray photoelectron spectroscopy (XPS). Detailed quantitative XPS analysis, in which all the amounts are relative to sodium-assumed not to be released from the samples, of the carbon, oxygen, and particularly, nitrogen components, reveals that irradiation leads to sugar degradation with CO-based compounds release for energies above 6.9 eV and decrease of nitrogen groups which are not involved in hydrogen bonding at energies above 4.2 eV. Also the phosphate groups are seen to decrease to energies above 4.2 eV. Analysis of XPS spectra allowed to conclude that the damage on bases peripheral nitrogen atoms are following the damage on phosphates. It suggests that very low kinetic energy photoelectrons are ejected from the DNA bases, as a result of UV light induced breaking of the phosphate ester groups which forms a transient anion with resonance formation and whereby most of the nitrogen DNA peripheral groups are removed. The degree of ionization of DNA was observed to increase with radiation energy, indicating that the ionized phosphate groups are kept unchanged. This result was interpreted by the shielding of phosphate groups caused by water molecules hydration near sodium atoms.


Subject(s)
DNA Damage , DNA/chemistry , DNA/genetics , Ultraviolet Rays/adverse effects , Hydrogen Bonding , Models, Molecular , Nucleic Acid Conformation , Photoelectron Spectroscopy , Thermodynamics
13.
J Nanosci Nanotechnol ; 12(8): 6754-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22962818

ABSTRACT

Copper oxide is a well known p-type semiconductor material, usually obtained by thermal oxidation of copper thin-films within few minutes, at atmospheric pressure. In this paper, thin films of copper oxide that were deposited by radio-frequency plasma enhanced reactive thermal evaporation of copper at room temperature, without any post-deposition annealing treatment, are studied. The deposition of good quality p-type semiconductor oxide to be used in the fabrication of p-TFTs is the purpose of this work. The thickness of the films varies from 97 up to 160 nm. The influence of rf power density on chemical, electrical and optical properties of the films was studied. Samples present conductivity within the range of 6 x 10(-5) to 4 x 10(2) omega(-1) x cm(-1) (thermal activation energy in the interval 0.46 to 0.01 eV). The p-type conductivity of the films was confirmed by Seebeck effect in the more conductive samples. Surface composition obtained by XPS analysis was correlated with optical and electrical properties, showing that rf-power plays a main role in changes of material characteristics.

14.
Langmuir ; 21(19): 8765-73, 2005 Sep 13.
Article in English | MEDLINE | ID: mdl-16142959

ABSTRACT

The adsorption of phenylphosphonic acid (PPA) on GaAs (100) surfaces from solutions in acetonitrile/water mixtures was studied using Fourier transform infrared spectroscopy in attenuated total reflection in multiple internal reflections (ATR/MIR), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), and atomic force microscopy (AFM). ATR/MIR in situ showed that the accumulation of PPA molecules near the GaAs surface increased with the water concentration in the solution. For water contents lower than 4%, ATR/MIR and XPS results are consistent with the formation of a low-density monolayer. A mechanism is proposed for H2O percentages lower than 4% involving the creation of interfacial bonds through a Brønsted acid-base reaction, which involves the surface hydroxyl groups most probably bound to Ga. It was found that the morphology of the final layer depended strongly on the water concentration in the adsorbing solution. For water concentrations equal to or higher than 5%, the amount of adsorbed molecules drastically increased and was accompanied by modifications in the infrared spectral region corresponding to P-O and P=O. This sudden change indicates a deprotonation of the acid. XPS studies revealed the presence of extra oxygen atoms as well as gallium species in the layer, leading to the conclusion that phosphonate and hydrogenophosphonate ions are present in the PPA layer intercalated with H3O+ and Ga3+ ions. This mechanism enables the formation of layers approximately 10 times thicker than those obtained with lower H2O percentages. HREELS indicated that the surface is composed of regions covered by PPA layers and uncovered regions, but the uncovered regions disappeared for water contents equal to or higher than 5%. XPS results are interpreted using a model consisting of a monolayer partially covering the surface and a thick layer. This model is consistent with AFM images revealing roughness on the order of 7 nm for the thick layer and 0.2-0.5 nm for the thin layer. Sonication proves to be an effective method for reducing layer thickness.


Subject(s)
Arsenicals/chemistry , Gallium/chemistry , Organophosphorus Compounds/chemistry , Adsorption , Kinetics , Particle Size , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...