Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38541598

ABSTRACT

This study explores a simple method of fabricating hybrid supercapacitor electrodes, which could potentially broaden the application of this technology. The method involves electrospinning a uniform solution of Matrimid/Metal-Organic Polyhedra 18 (MOP-18) followed by carbonization at a relatively low temperature of 700 °C in air, rather than in an inert atmosphere, to create free-standing, redox-active hybrid supercapacitor electrodes. Additionally, the synthesis procedure requires no stabilization or activation steps, which enhances the cost effectiveness of the synthesized electrode materials. The resulting C/CuO composite was used as the working electrode, with a polyacrylonitrile (PAN)/Poly(methyl methacrylate) (PMMA) carbon nanofiber (CNF) electrode as the counter and 6 M KOH as the electrolyte in a T-cell configuration. The cell performance and redox activity were evaluated using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests. Additionally, the physical and chemical structures of the electrode materials were assessed using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron spectroscopy (TEM), X-ray diffractometry (PXRD), surface area analysis and other characterization techniques. The electrode material demonstrated a specific capacitance of up to 206 F/g. Supercapacitors utilizing this material display an energy density of 10.3 Wh/kg (active material) at a current density of 1 A/g in electrochemical testing.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630876

ABSTRACT

Carbon molecular sieve membranes (CMSMs) were prepared by carbonizing the high free volume polyimide BTDA-BAF that is obtained from the reaction of benzophenone-3,3',4,4'-tetracarboxylic dianhydride (BTDA) and 9,9-bis(4-aminophenyl) fluorene (BAF). The bulky cardo groups prevented a tight packing and rotation of the chains that leads to high permeabilities of their CMSMs. The incorporation of metal-organic polyhedra 18 (MOP-18, a copper-based MOP) in the BTDA-BAF polymer before pyrolysis at 550 °C prevented the collapse of the pores and the aging of the CMSMs. It was found that upon decomposition of MOP-18, a distribution of copper nanoparticles minimized the collapse of the graphitic sheets that formed the micropores and mesopores in the CMSM. The pillared CMSMs displayed CO2 and CH4 permeabilities of 12,729 and 659 Barrer, respectively, with a CO2/CH4 selectivity of 19.3 after 3 weeks of aging. The permselectivity properties of these membranes was determined to be at the 2019 Robeson upper bound. In contrast, the CMSMs from pure BTDA-BAF aged three times faster than the CMSMs from MOP-18/BTDA-BAF and exhibited lower CO2 and CH4 permeabilities of 5337 and 573 Barrer, respectively, with a CO2/CH4 selectivity of 9.3. The non-pillared CMSMs performed below the upper bound.

3.
ACS Omega ; 7(32): 27896-27902, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990501

ABSTRACT

Two-dimensional mesoporous hexagonal carbon sheets (MHCSs) have been prepared via a chemical vapor deposition method employing mesoporous Mg(OH)2 hexagonal sheets as the template and acetylene gas as the carbon precursor. MHCSs with porosity in the micropore-mesopore range have a high specific surface area of 1785 m2·g-1. The hierarchical microporous-mesoporous pore structure enables rapid ion transport across the hexagonal carbon sheets, resulting in superior electrochemical performance. The MHCS electrodes showed a maximum specific capacitance of 162 F·g-1 at 5 mV s-1 using the electrolyte 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). MHCS symmetric coin cells exhibited a maximum energy density of 67 Wh·kg-1 at 0.5 A·g-1 and a maximum power density of 14.97 kW·kg-1 at 10 A·g-1.

4.
Nanotechnology ; 32(32)2021 May 17.
Article in English | MEDLINE | ID: mdl-33906170

ABSTRACT

Hybrid supercapacitors (SCs) made of carbon-metal oxide composites are devices which combine the advantages of electric double layer capacitors and pseudocapacitors viz high energy density, high power density and high cyclability. This is best achieved when the pseudocapacitive components are uniform in size and distribution on the conducting carbon support. Electrodes mats, fabricated from carbonized electrospun fibers generated from solutions of polyacrylonitrile (PAN) as the carbon source, cobalt (III) acetylacetonate as a metal oxide precursor, and polymethacrylic acid (PMAA) as a metal oxide precursor carrier were utilized in coin cell SCs. Fibers without the PMMA carrier were prepared for comparison. XRD and TGA showed conversion of the cobalt precursor to a mixture of cobalt and cobalt oxide (Co3O4). When the PMAA carrier was used, specific capacitance increased from 68 F g-1in PAN-Co3O4to 125 F g-1in PAN-PMAA-Co3O4. The addition of PMAA to the system results in better uniformity, accessibility and dispersion of metal and metal oxide particles. Due to the relatively low surface area of carbonized samples, Co3O4nanoparticles are the primary contributors to charge storage. The fabricated fibers show an energy density of 8.9 at 750 W kg-1, which is twice that of the fibers made without PMAA.

5.
ACS Appl Mater Interfaces ; 12(10): 11884-11889, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32050768

ABSTRACT

Hierarchical porous carbons (HPCs) hold great promise in energy-related applications owing to their excellent chemical stability and well-developed porous structures. Attention has been drawn toward developing new synthetic strategies and precursor materials that permit greater control over composition, size, morphology, and pore structure. There is a growing trend of employing metal-organic frameworks (MOFs) as HPC precursors as their highly customizable characteristics favor new HPC syntheses. In this article, we report a biomimetically grown bacterial-templated MOF synthesis where the bacteria not only facilitate the formation of MOF nanocrystals but also provide morphology and porosity control. The resultant HPCs show improved electrochemical capacity behavior compared to pristine MOF-derived HPCs. Considering the broad availability of bacteria and ease of their production, in addition to significantly improved MOF growth efficiency on bacterial templates, we believe that the bacterial-templated MOF is a promising strategy to produce a new generation of HPCs.


Subject(s)
Bacteria/chemistry , Biomimetic Materials/chemistry , Carbon/chemistry , Metal-Organic Frameworks/chemistry , Electric Capacitance , Escherichia coli/chemistry , Porosity
6.
Nanotechnology ; 30(43): 435401, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31311895

ABSTRACT

An acrylonitrile based copolymer, poly(acrylonitrile-co-itaconic acid), P(AN-co-IA) was synthesized with different amounts of itaconic acid (IA) to study in situ porogen activity of IA to produce porous carbon nanofibers (CNFs) without any subsequent physical or chemical activation. The concept developed here avoids unnecessary and complex extra activation steps when fabricating CNFs which ultimately lead to lower char yields and uncontrollable pore sizes. The ability of COOH in P(AN-co-IA) to act as an in situ porogen by releasing CO2 during carbonization was verified by simultaneous thermogravimetric analysis-mass spectrometry compared to polyacrylonitrile (PAN). The specific surface area of PAN CNFs (27 m2 g-1) dramatically increases to 1427 m2 g-1 upon addition of ∼8 wt% IA without any ex situ activation. Furthermore, we confirmed that the porosity could be tuned by changing the IA content. The best electrochemical performance was obtained from the copolymer containing ∼8 wt% of IA, which gives a maximum specific capacitance of ∼93 F g-1 at a scan rate of 10 mV s-1 and energy density of ∼46 Wh kg-1 at 1 A g-1 without any subsequent physical or chemical activation.

7.
Nanotechnology ; 30(35): 355402, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31100735

ABSTRACT

Lignin was blended with polyacrylonitrile (PAN) in different ratios and fabricated into carbon nanofiber electrodes by electrospinning followed by thermal stabilization, carbonization and subsequent activation by CO2 of the carbonized mats. These carbon fiber electrodes exhibit high surface area, high mesoporosity, high graphitic content and high electrical conductivity. Activated carbon nanofiber mats derived from PAN:Lignin 70:30 blends display a surface area of 2370 m2 g-1 with 0.635 cm3 g-1 mesopore volume. These results are due to the selective partial removal of carbonized lignin during the activation step. Coin cell supercapacitors employing these electrodes exhibit 128 Fg-1 specific capacitance, 59 Wh kg-1 energy density and a 15 kW kg-1 power density when operated at 3.5 V using an ionic liquid electrolyte. Since lignin is an inexpensive, abundant, and green polymer, incorporating it into carbon blends enhances the scalability of such materials in energy storage applications.

8.
Nanotechnology ; 30(15): 155402, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-30645989

ABSTRACT

Flexible, free standing and binder-free electrodes were fabricated by electrospinning from a series of lignin: polyvinyl alcohol (PVA) polymer blends, followed by heat treatment. PVA has the dual function of facilitating the electrospinning of lignin and acting as a sacrificial polymer. Upon stabilization, carbonization and CO2 activation, carbon nanofibers (ACNF) derived from the lignin:PVA 80:20 blend displayed a high surface area of 2170 m2 g-1 and a mesopore volume of 0.365 cm3 g-1. ACNFs derived from all the compositions show high degrees of graphitization based on Raman analysis. Pyr14TFSI ionic liquid (IL), modified by mixing with propylene carbonate and ethylene carbonate to reduce the viscosity and increase the ionic conductivity, was used as a high-performance electrolyte. The resulting IL mixture exhibited a four-fold increase in ionic conductivity compared to the neat IL Coin cell supercapacitors using electrodes derived from lignin:PVA 80:20 blends and this electrolyte displayed 87 F g-1 specific capacitance and 38 Wh kg-1 energy density which is the highest reported energy density for lignin:PVA blends to date.

9.
J Nanosci Nanotechnol ; 18(1): 414-418, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29768862

ABSTRACT

Wrinkled mesoporous silica (WMS) has been shown to be a promising material for catalysis and drug delivery. The WMS possesses a unique wrinkled structure with conical shaped pores radiating from the center to the surface of each particle. Lanthanum oxide was supported on wrinkled mesoporous silica as a hard template for the synthesis of graphitic carbon. The resulting carbon material retains the unique wrinkled structure and has high surface area (∼879 m2/g) as well as graphitic walls which were observed by transmission electron microscopy. The amount of La loaded onto the silica support plays a key role in the formation of the mechanically and chemically stable carbon material.

10.
Nanotechnology ; 29(27): 275701, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29629876

ABSTRACT

Carbon nanofibers (CNFs) are promising electrode materials for electrochemical double layer capacitors due to their high porosity and electrical conductivity. CNFs were prepared by electrospinning and subsequent thermal treatment of a new precursor polymer, 6FDA-durene, without the addition of pore generating agents. The conversion of precursor nanofibers into CNFs was confirmed using Raman spectroscopy. CNFs were activated and annealed, and nitrogen adsorption/desorption measurements were conducted to determine surface area and porosity. These activated/annealed CNFs were used as binderless electrodes in coin cells with an ionic liquid electrolyte. The devices displayed a specific capacitance of 128 F g-1, an energy density of 63.4 Wh kg-1 (at 1 A g-1), and a power density of 11.0 KW kg-1 (at 7 A g-1).

11.
ACS Omega ; 3(10): 13913-13918, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-31458087

ABSTRACT

Lanthanum hydroxide nanorods were employed as both a template and catalyst for carbon synthesis by chemical vapor deposition. The resulting carbon possesses hollow nanorod shapes with graphitic walls. The hollow carbon nanorods were interconnected at some junctions forming a mazelike network, and the broken ends of the tubular carbon provide accessibility to the inner surface of the carbon, resulting in a surface area of 771 m2/g. The hollow carbon was tested as an electrode material for supercapacitors. A specific capacitance of 128 F/g, an energy density of 55 Wh/kg, and a power density of 1700 W/kg at 1 A/g were obtained using the ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as the electrolyte.

12.
ACS Appl Mater Interfaces ; 8(45): 31192-31201, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27776207

ABSTRACT

Thermoacoustic performance of thin freestanding sheets of carbonized poly(acrylonitrile) and polybenzimidazole nanofibers are studied as promising candidates for thermophones. We analyze thermodynamic properties of sheets using transport parameters of single nanofibers and their aligned and randomly electrospun thin film assemblies. The electrical and thermal conductivities, thermal diffusivity, heat capacity, and infrared blackbody radiation are investigated to extract the heat exchange coefficient and enhance the energy conversion efficiency. Spectral and power dependencies of sound pressure in air are compared with carbon nanotube sheets and theoretical prediction. Despite lower thermoacoustic performance compared to that of CNT sheets, the mechanical strength and cost-effective production technology of thermophones make them very attractive for large-size sound projectors. The advantages of carbonized electrospun polymer nanofiber sheets are in the low frequency domain (<1000 Hz), where the large thermal diffusion length diminishes the thermal inertia of thick (∼200 nm) nonbundled fibers and the high intrinsic thermal conductivity of fibers enhances the heat exchange coefficient. Applications of thermoacoustic projectors for loudspeakers, high power SONAR arrays, and sound cancellation are discussed.

13.
Chem Commun (Camb) ; 52(87): 12881-12884, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27738669

ABSTRACT

For the first time, porous organic polymers (POPs) based on the smallest buckybowl, corannulene (BB-POPs) have been synthesized. Three POPs were synthesised via Sonogashira co-polymerization of 1,2,5,6-tetrabromocorannulene and alkyne linkers. BB-POP-3 exhibits the highest surface area (SABET = 560 m2 g-1) and CO2 adsorption of 11.7 wt%, while they retain the redox properties of corannulene.

14.
Nanotechnology ; 27(42): 425708, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27632072

ABSTRACT

Porous carbon nanofibers were prepared by electrospinning blend solutions of polybenzimidazole/poly-L-lactic acid (PBI/PLLA) and carbonization. During thermal treatment, PLLA was decomposed, resulting in the creation of pores in the carbon nanofibers. From SEM images, it is shown that carbon nanofibers had diameters in the range of 100-200 nm. The conversion of PBI to carbon was confirmed by Raman spectroscopy, and the surface area and pore volume of carbon nanofibers were determined using nitrogen adsorption/desorption analyses. To investigate electrochemical performances, coin-type cells were assembled using free-standing carbon nanofiber electrodes and ionic liquid electrolyte. cyclic voltammetry studies show that the PBI/PLLA-derived porous carbon nanofiber electrodes have higher capacitance due to lower electrochemical impedance compared to carbon nanofiber electrode from PBI only. These porous carbon nanofibers were activated using ammonia for further porosity improvement and annealed to remove the surface functional groups to better match the polarity of electrode and electrolyte. Ragone plots, correlating energy density with power density calculated from galvanostatic charge-discharge curves, reveal that activation/annealing further improves energy and power densities.

15.
Materials (Basel) ; 9(8)2016 Jul 30.
Article in English | MEDLINE | ID: mdl-28773766

ABSTRACT

Membrane-based gas separation has attracted a great deal of attention recently due to the requirement for high purity gasses in industrial applications like fuel cells, and because of environment concerns, such as global warming. The current methods of cryogenic distillation and pressure swing adsorption are energy intensive and costly. Therefore, polymer membranes have emerged as a less energy intensive and cost effective candidate to separate gas mixtures. However, the use of polymeric membranes has a drawback known as the permeability-selectivity tradeoff. Many approaches have been used to overcome this limitation including the use of polymer blends. Polymer blending technology synergistically combines the favorable properties of different polymers like high gas permeability and high selectivity, which are difficult to attain with a single polymer. During polymer mixing, polymers tend to uncontrollably phase separate due to unfavorable thermodynamics, which limits the number of completely miscible polymer combinations for gas separations. Therefore, compatibilizers are used to control the phase separation and to obtain stable membrane morphologies, while improving the mechanical properties. In this review, we focus on immiscible polymer blends and the use of compatibilizers for gas separation applications.

16.
ACS Appl Mater Interfaces ; 7(33): 18618-27, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26259013

ABSTRACT

An immiscible polymer blend comprised of high-performance copolyimide 6FDA-DAM:DABA(3:2) (6FDD) and polybenzimidazole (PBI) was compatibilized using 2-methylimidazole (2-MI), a commercially available small molecule. Membranes were fabricated from blends of 6FDD:PBI (50:50) with and without 2-MI for H2/CO2 separations. The membranes demonstrated a matrix-droplet type microstructure as evident with scanning electron microscopy (SEM) imaging where 6FDD is the dispersed phase and PBI is the continuous phase. In addition, membranes with 2-MI demonstrated a uniform microstructure as observed by smaller and more uniformly dispersed 6FDD domains in contrast to 6FDD:PBI (50:50) blend membranes without 2-MI. This compatibilization effect of 2-MI was attributed to interfacial localization of 2-MI that lowers the interfacial energy similar to a surfactant. Upon the incorporation of 2-MI, the H2/CO2 selectivity improved remarkably, compared to the pure blend, and surpassed the Robeson's upper bound. To our knowledge, this is the first report of the use of a small molecule to compatibilize a high-performance immiscible polymer blend. This approach could afford a novel class of membranes in which immiscible polymer blends can be compatibilized in an economical and convenient fashion.

17.
Rev Sci Instrum ; 84(6): 065107, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822378

ABSTRACT

An instrument was built for the permeation testing of flat polymer membranes under pressures up to 3.0 MPa and temperatures up to 300 °C. The high pressure, high temperature cell uses aluminum tape and a graphite gasket to minimize the leak from the high pressure side to the low pressure side, making possible the permeability measurements of slow diffusing gases such as N2. A computer program developed on a LabVIEW platform fully controls the instrument and data acquisition. It incorporates algorithms to automatically adjust the downstream volume, repressurize the upstream volume, vent the downstream volume to prevent over pressurization, and change the temperature of the permeation cell. The percent relative standard deviation of the permeability measurements was <5.5%. Flat membranes of VTEC PI-1388 polymer were tested from 0.3 to 3.0 MPa and from 35 to 300 °C. The permeabilities and fluxes of H2, CO2, and N2 increased with increasing temperature, while the H2∕CO2 ideal selectivity remained unchanged. The major contribution to increased flux arose from increments in temperature rather than pressure.

18.
J Phys Chem B ; 117(16): 4442-8, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23167914

ABSTRACT

A novel symmetrical alkylsulfonyl-substituted poly(phenylenevinylene) derivative, poly [2,5-bis-(2'-ethylhexylsulfonyl)-1,4-phenylene)vinylene] (SO2EH-PPV), was synthesized via palladium-catalyzed Stille coupling, and its electronic and optical properties were investigated. The novel PPV derivative was characterized by NMR, UV-visible absorption, photoluminescence, gel permeation chromatography, infrared spectroscopy, and cyclic voltammetry (CV). The polymer with Mw of 27,800 and a polydispersity index of 2.6 is readily soluble in common organic solvents, such as THF, chloroform, and toluene. The fluorescence quantum yield of the polymer, determined against rhodamine 6G in dilute aqueous solutions, was 0.95. The HOMO and LUMO levels of SO2EH-PPV were calculated to be -6.0 and -3.61 eV, respectively. The results obtained by CV suggest that SO2EH-PPV is a strong electron acceptor polymer. Single layer stable polymer light-emitting diode devices with the configuration of (ITO/PEDOT:PSS/SO2EH-PPV polymer/Al) were fabricated exhibiting a green light emission.

19.
ACS Appl Mater Interfaces ; 3(11): 4512-7, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22029527

ABSTRACT

Vanadium oxide nanotubes have shown great promise as electrode materials for energy storage devices. In this study, we report the synthesis of V(2)O(5) nanotube (VNT) clusters, which form densely packed radial arrangements of VNTs on high-surface-area carbon fiber fabrics (CF). This was achieved by coating the CF with V(2)O(5) by pulsed laser deposition (PLD). Hydrothermal treatment of the PLD films in the presence of excess intercalated V(2)O(5) results in formation of well-adhered VNT clusters on the CF. The densely packed VNTs have inner and outer diameters and interlayer distances of ~24, ~70, and ~2.4 nm, respectively. Coin cell type supercapacitors (CR2032) were assembled using VNT-CF as the anode material and electrochemical properties were evaluated.

20.
Chem Commun (Camb) ; 47(39): 10987-9, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21909547

ABSTRACT

A new dialkylthio benzo[1,2-b:4,5-b']dithiophene (S-BDT) was designed and synthesized and the polymer S-PBDT was prepared by a Stille coupling reaction. A high open-circuit voltage (V(oc)) of up to 0.99 V was achieved in polymer solar cells with PCBM.

SELECTION OF CITATIONS
SEARCH DETAIL
...