Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25738388

ABSTRACT

Many natural products influence neurotransmission and are used clinically. In particular, facilitatory agents can enhance neurotransmission and are potentially useful for treating neuromuscular diseases in which muscular weakness is the major symptom. In this work, we investigated the facilitatory effect of apolar to polar fractions of Casearia sylvestris Sw. (guaçatonga) on contractility in mouse phrenic nerve-diaphragm (PND) and chick biventer cervicis (BC) neuromuscular preparations exposed to indirect (via the nerve; 3 V stimuli) and direct (30 V stimuli) muscle stimulation in the absence and presence of pharmacological antagonists. Methanolic and ethyl acetate fractions, but not hexane or dichloromethane fractions, exerted a facilitatory effect on PND (indirect stimulation). The methanolic fraction was chosen for further assays to assess the involvement of: 1) presynaptic sites (axons or nerve terminals), 2) postsynaptic sites (cholinergic receptors, sarcolemma or T-tubules), and 3) the synaptic cleft (acetylcholinesterase enzyme). In preparations treated with d-tubocurarine, the methanolic fraction did not cause facilitation in response to direct stimuli; this fraction was also unable to reverse dantrolene-induced blockade (indirect stimulation). In curarized preparations, the methanolic fraction either restored neuromuscular transmission (mimicking the effect of neostigmine) or failed to cause any recovery of neurotransmission. In the presence of 3,4-diaminopyridine (3,4-DAP), the methanolic fraction decreased twitch amplitude, whereas at a high frequency of stimulation (40 Hz) there was an increase in tetanic tension. In BC preparations, the methanolic fraction did not affect contractures to exogenous acetylcholine or potassium chloride. Incubation with atropine showed there was certain modulation by prejunctional nicotinic receptors, whereas treatment with nifedipine showed that the neurofacilitation required the entry of extracellular calcium. Tetrodotoxin did not prevent the facilitatory effect of 3,4-DAP or neostigmine, but antagonized the response to the methanolic fraction. These findings indicate that neuronal sodium channels have an important role in the facilitatory response to the methanolic fraction, with extracellular calcium entry via calcium channels modulating this neurofacilitation. Possible modulation of prejunctional cholinoceptors was not excluded, particularly in view of certain antagonism by the methanolic fraction at muscarinic receptors. Since facilitation by the methanolic fraction involved enhanced acetylcholine release, use of this fraction could be potentially beneficial in neuromuscular diseases and in the reversal of residual paralysis in the post-operative period or after local anaesthesia.

2.
Curr Pharm Biotechnol ; 16(5): 468-81, 2015.
Article in English | MEDLINE | ID: mdl-25751174

ABSTRACT

Many natural products influence neurotransmission and are used clinically. In particular, facilitatory agents can enhance neurotransmission and are potentially useful for treating neuromuscular diseases in which muscular weakness is the major symptom. In this work, we investigated the facilitatory effect of apolar to polar fractions of Casearia sylvestris Sw. (guaçatonga) on contractility in mouse phrenic nerve-diaphragm (PND) and chick biventer cervicis (BC) neuromuscular preparations exposed to indirect (via the nerve; 3 V stimuli) and direct (30 V stimuli) muscle stimulation in the absence and presence of pharmacological antagonists. Methanolic and ethyl acetate fractions, but not hexane or dichloromethane fractions, exerted a facilitatory effect on PND (indirect stimulation). The methanolic fraction was chosen for further assays to assess the involvement of: 1) presynaptic sites (axons or nerve terminals), 2) postsynaptic sites (cholinergic receptors, sarcolemma or T-tubules), and 3) the synaptic cleft (acetylcholinesterase enzyme). In preparations treated with d-tubocurarine, the methanolic fraction did not cause facilitation in response to direct stimuli; this fraction was also unable to reverse dantrolene-induced blockade (indirect stimulation). In curarized preparations, the methanolic fraction either restored neuromuscular transmission (mimicking the effect of neostigmine) or failed to cause any recovery of neurotransmission. In the presence of 3,4-diaminopyridine (3,4-DAP), the methanolic fraction decreased twitch amplitude, whereas at a high frequency of stimulation (40 Hz) there was an increase in tetanic tension. In BC preparations, the methanolic fraction did not affect contractures to exogenous acetylcholine or potassium chloride. Incubation with atropine showed there was certain modulation by prejunctional nicotinic receptors, whereas treatment with nifedipine showed that the neurofacilitation required the entry of extracellular calcium. Tetrodotoxin did not prevent the facilitatory effect of 3,4-DAP or neostigmine, but antagonized the response to the methanolic fraction. These findings indicate that neuronal sodium channels have an important role in the facilitatory response to the methanolic fraction, with extracellular calcium entry via calcium channels modulating this neurofacilitation. Possible modulation of prejunctional cholinoceptors was not excluded, particularly in view of certain antagonism by the methanolic fraction at muscarinic receptors. Since facilitation by the methanolic fraction involved enhanced acetylcholine release, use of this fraction could be potentially beneficial in neuromuscular diseases and in the reversal of residual paralysis in the post-operative period or after local anaesthesia.


Subject(s)
Casearia , Diaphragm/drug effects , Phrenic Nerve/drug effects , Animals , Calcium Channels/physiology , Chickens , Cholinesterases/metabolism , Creatine Kinase , Diaphragm/physiology , Male , Mice , Muscle Contraction/drug effects , Neuromuscular Junction/drug effects , Phrenic Nerve/physiology , Plant Extracts , Plant Leaves , Receptors, Muscarinic/physiology , Sodium Channels/physiology
3.
Molecules ; 19(5): 5790-805, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24806579

ABSTRACT

Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 µg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 µg/mL) caused irreversible paralysis. Preincubation of TM (200 µg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.


Subject(s)
Blood Proteins/chemistry , Isoflavones/chemistry , Muscle, Skeletal/drug effects , Neuromuscular Blockade , Snake Venoms/toxicity , Animals , Blood Proteins/administration & dosage , Blood Proteins/isolation & purification , Bothrops/metabolism , Brazil , Crotalid Venoms/administration & dosage , Crotalid Venoms/antagonists & inhibitors , Dipteryx/chemistry , Humans , In Vitro Techniques , Isoflavones/administration & dosage , Isoflavones/isolation & purification , Mice , Muscle, Skeletal/pathology , Necrosis/drug therapy , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Snake Venoms/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...