Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 50(4): 3439-3450, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36757549

ABSTRACT

BACKGROUND: Megalocytiviruses (MCV) are double-stranded DNA viruses that infect fish. Two species within the genus are epidemiologically important for fish farming: red sea bream iridovirus (RSIV) and infectious spleen and kidney necrosis virus (ISKNV). The objective of this work was to study regions that allow the differentiation and correct diagnosis of RSIV and ISKNV. METHODS: The regions ORF450L, ORF342L, ORF077, and the intergenic region between ORF37 and ORF42R were sequenced and compared with samples from the database. RESULTS: The tree constructed using the sequencing of the PCR product Megalocytivirus. ORF077 separated the three major clades of MCV. RISV genotypes were well divided, but not ISKNV. All qPCRs tests showed acceptable repeatability values, that is, less than 5%. CONCLUSION: Two qPCRs for ISKNV detection and two for RSIV were considered suitable for use in the diagnosis and typing of MCV. The results of this study demonstrate the importance of an accurate evaluation of methodologies for the differentiation of MCV.


Subject(s)
DNA Virus Infections , Fish Diseases , Iridoviridae , Iridovirus , Animals , Iridoviridae/genetics , Real-Time Polymerase Chain Reaction , DNA Virus Infections/genetics , DNA Virus Infections/veterinary , Phylogeny
2.
J Biol Chem ; 288(39): 28009-20, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23935106

ABSTRACT

The phosphate-dependent transition between enzymatically inert dimers into catalytically capable tetramers has long been the accepted mechanism for the glutaminase activation. Here, we demonstrate that activated glutaminase C (GAC) self-assembles into a helical, fiber-like double-stranded oligomer and propose a molecular model consisting of seven tetramer copies per turn per strand interacting via the N-terminal domains. The loop (321)LRFNKL(326) is projected as the major regulating element for self-assembly and enzyme activation. Furthermore, the previously identified in vivo lysine acetylation (Lys(311) in humans, Lys(316) in mouse) is here proposed as an important down-regulator of superoligomer assembly and protein activation. Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, a known glutaminase inhibitor, completely disrupted the higher order oligomer, explaining its allosteric mechanism of inhibition via tetramer stabilization. A direct correlation between the tendency to self-assemble and the activity levels of the three mammalian glutaminase isozymes was established, with GAC being the most active enzyme while forming the longest structures. Lastly, the ectopic expression of a fiber-prone superactive GAC mutant in MDA-MB 231 cancer cells provided considerable proliferative advantages to transformed cells. These findings yield unique implications for the development of GAC-oriented therapeutics targeting tumor metabolism.


Subject(s)
Enzyme Inhibitors/chemistry , Gene Expression Regulation, Neoplastic , Glutaminase/metabolism , Protein Multimerization , Algorithms , Allosteric Site , Catalytic Domain , Cell Line, Tumor , Cell Proliferation , Cross-Linking Reagents , Crystallography, X-Ray , Glutaminase/chemistry , Humans , Isoenzymes/chemistry , Microscopy, Electron, Transmission , Mutagenesis , Mutation , Phosphates/metabolism , Polymers/chemistry , Protein Conformation , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...