Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chemistry ; 29(53): e202301442, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37606898

ABSTRACT

A new fluorinated manganese porphyrin, (Mn-TPP-p-CF3 ) is reported capable of providing, based on the Mn(III)/Mn(II) equilibrium, dual 1 H relaxivity and 19 F NMR response to redox changes. The physical-chemical characterization of both redox states in DMSO-d6 /H2 O evidenced that the 1 H relaxometric and 19 F NMR properties are appropriate for differential redox MRI detection. The Mn(III)-F distance (dMn-F =9.7-10 Å), as assessed by DFT calculations, is well tailored to allow for adequate paramagnetic effect of Mn(III) on 19 F T1 and T2 relaxation times. Mn-TPP-p-CF3 has a reversible Mn(II)/Mn(III) redox potential of 0.574 V vs. NHE in deoxygenated aqueous HEPES/ THF solution. The reduction of Mn(III)-TPP-p-CF3 in the presence of ascorbic acid is slowly, but fully reversed in the presence of air oxygen, as monitored by UV-Vis spectrometry and 19 F NMR. The broad 1 H and 19 F NMR signals of Mn(III)-TPP-p-CF3 disappear in the presence of 1 equivalent ascorbate replaced by a shifted and broadened 19 F NMR signal from Mn(II)-TPP-p-CF3 . Phantom 19 F MR images in DMSO show a MRI signal intensity decrease upon reduction of Mn(III)-TPP-p-CF3 , retrieved upon complete reoxidation in air within ~24 h. 1 H NMRD curves of the Mn(III)/(II)-TPP-p-CF3 chelates in mixed DMSO/water solvent have the typical shape of Mn(II)/Mn(III) porphyrins.

2.
Eur J Cancer ; 153: 27-39, 2021 08.
Article in English | MEDLINE | ID: mdl-34130227

ABSTRACT

BACKGROUND: Chemotherapy is well documented to disrupt the gut microbiome, leading to poor treatment outcomes and a heightened risk of adverse toxicity. Although strong associations exist between its composition and gastrointestinal toxicity, its causal contribution remains unclear. Our inability to move beyond association has limited the development and implementation of microbial-based therapeutics in chemotherapy adjuncts with no clear rationale of how and when to deliver them. METHODS/RESULTS: Here, we investigate the impact of augmenting the gut microbiome on gastrointestinal toxicity caused by the chemotherapeutic agent, methotrexate (MTX). Faecal microbiome transplantation (FMT) delivered after MTX had no appreciable impact on gastrointestinal toxicity. In contrast, disruption of the microbiome with antibiotics administered before chemotherapy exacerbated gastrointestinal toxicity, impairing mucosal recovery (P < 0.0001) whilst increasing diarrhoea severity (P = 0.0007) and treatment-related mortality (P = 0.0045). Importantly, these detrimental effects were reversed when the microbiome was restored using autologous FMT (P = 0.03), a phenomenon dictated by the uptake and subsequent expansion of Muribaculaceae. CONCLUSIONS: These are the first data to show that clinically impactful symptoms of gastrointestinal toxicity are dictated by the microbiome and provide a clear rationale for how and when to target the microbiome to mitigate the acute and chronic complications caused by disruption of the gastrointestinal microenvironment. Translation of this new knowledge should focus on stabilising and strengthening the gut microbiome before chemotherapy and developing new microbial approaches to accelerate recovery of the mucosa. By controlling the depth and duration of mucosal injury, secondary consequences of gastrointestinal toxicity may be avoided.


Subject(s)
Anti-Bacterial Agents/adverse effects , Diarrhea/chemically induced , Animals , Fecal Microbiota Transplantation , Humans , Microbiota , Rats
3.
Curr Opin Support Palliat Care ; 14(2): 127-134, 2020 06.
Article in English | MEDLINE | ID: mdl-32324645

ABSTRACT

PURPOSE OF REVIEW: There is a growing number of studies implicating gut dysbiosis in mucositis development. However, few studies have shed light on the causal relationship limiting translational potential. Here, we detail the key supportive evidence for microbial involvement, candidate mechanisms by which the microbiome may contribute to mucositis and emerging approaches to model host-microbe interactions with clinical relevance and translational potential. RECENT FINDINGS: Synthesis of existing clinical data demonstrate that modulating the microbiome drastically alters the development and severity of mucositis, providing a strong rationale for its involvement. Review of the literature revealed potential microbiome-dependent mechanisms of mucosal injury including altered drug metabolism, bile acid synthesis and regulation of the intestinal barrier. Current studies are limited in their mechanistic insight due to cross-sectional and would benefit from longitudinal analyses and baseline phenotyping. SUMMARY: The causative role of the microbiome in mucositis development remains unclear. Future studies must adopt comprehensive microbial analyses with functional assessment, and utilize emerging ex-vivo models to interrogate host-microbe interactions in mucositis.


Subject(s)
Antineoplastic Agents/adverse effects , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Mucositis/chemically induced , Mucositis/physiopathology , Antineoplastic Agents/pharmacokinetics , Bile Acids and Salts/biosynthesis , Cross-Sectional Studies , Dysbiosis/chemically induced , Dysbiosis/physiopathology , Gastrointestinal Microbiome/radiation effects , Humans , Mucositis/prevention & control , Prebiotics/administration & dosage , Probiotics/administration & dosage , Radiotherapy/adverse effects , Severity of Illness Index
4.
Mol Ther Nucleic Acids ; 11: 393-406, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29858074

ABSTRACT

After spinal cord injury (SCI), nerve regeneration is severely hampered due to the establishment of a highly inhibitory microenvironment at the injury site, through the contribution of multiple factors. The potential of antisense oligonucleotides (AONs) to modify gene expression at different levels, allowing the regulation of cell survival and cell function, together with the availability of chemically modified nucleic acids with favorable biopharmaceutical properties, make AONs an attractive tool for novel SCI therapy developments. In this work, we explored the potential of locked nucleic acid (LNA)-modified AON gapmers in combination with a fibrin hydrogel bridging material to induce gene silencing in situ at a SCI lesion site. LNA gapmers were effectively developed against two promising gene targets aiming at enhancing axonal regeneration-RhoA and GSK3ß. The fibrin-matrix-assisted AON delivery system mediated potent RNA knockdown in vitro in a dorsal root ganglion explant culture system and in vivo at a SCI lesion site, achieving around 75% downregulation 5 days after hydrogel injection. Our results show that local implantation of a AON-gapmer-loaded hydrogel matrix mediated efficient gene silencing in the lesioned spinal cord and is an innovative platform that can potentially combine gene regulation with regenerative permissive substrates aiming at SCI therapeutics and nerve regeneration.

5.
Int J Biol Macromol ; 103: 268-274, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28499944

ABSTRACT

Plasma deposition, liquid flame spray (LFS) and atomic layer deposition (ALD) were used to form inorganic coatings in new exopolysaccharide (FucoPol) biodegradable films. Coated films were characterised in terms of surface, optical and barrier properties in order to evaluate their potential use in food packaging. FucoPol films presented dense and homogeneous surface with instant water contact angle of 95̊. Plasma deposition of perfluorohexane (PFH) on FucoPol surface has not shown significant improvement in the hydrophobic behaviour over the time. The FucoPol coating of SiO2 nanoparticles deposited by LFS and plasma deposition of PFH have shown higher instant water contact angle (135°) caused by coating surface roughness, but this hydrophobic behaviour was not stable over time. FucoPol films coated only with TiO2 deposited by ALD and combination of that with plasma deposition of PFH have shown stable water contact angle during time (90̊ and 115̊, respectively), transparency in the same order of magnitude and significantly lower permeability to water vapour (3.45×10-11mol/m s Pa and 3.45×10-11mol/m s Pa when compared to uncoated films with 5.32×10-11mol/m s Pa). Moreover, films coated with TiO2-PFH have also shown a permeability to oxygen of 1.70×10-16molm/m2sPa which is 67% lower than uncoated films.


Subject(s)
Polysaccharides/chemistry , Hydrophobic and Hydrophilic Interactions , Oxygen/chemistry , Permeability , Plasma Gases/chemistry , Steam , Temperature , Titanium/chemistry
6.
Carbohydr Polym ; 147: 8-15, 2016 08 20.
Article in English | MEDLINE | ID: mdl-27178903

ABSTRACT

Bilayer films of FucoPol and chitosan were prepared and characterized in terms of optical, morphologic, hygroscopic, mechanical and barrier properties, to evaluate their potential application in food packaging. Bilayer films have shown dense and homogeneous layers, and presented enhanced properties when comparing to monolayer FucoPol films. Though, a high swelling degree in contact with liquid water (263.3%) and a high water vapour permeability (0.75×10(-11)mol/msPa), typical of polysaccharide films, was still observed. However, they presented a low permeability to O2 and CO2 (0.47×10(-16)molm/m(2)sPa and 5.8×10(-16)molm/m(2)sPa, respectively). Tensile tests revealed a flexible and resistant film with an elongation at break of 38% and an elastic modulus of 137MPa. The studied properties, in particular the excellent barrier to gases, impart these bilayer films potential to be used in packaging of low moisture content products, as well as in multilayered hydrophobic/hydrophilic/hydrophobic barriers for food products with a broader range of water content.


Subject(s)
Chitosan/chemistry , Food Packaging/standards , Permeability , Polysaccharides/chemistry , Tensile Strength , Water/chemistry
7.
Membranes (Basel) ; 6(2)2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27089372

ABSTRACT

Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.

8.
J Cell Mol Med ; 20(4): 750-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26865163

ABSTRACT

Hepatitis C virus (HCV) is the cause of one of the most prevalent viral infections worldwide. Upon infection, the HCV genome activates the RIG-I-MAVS signalling pathway leading to the production of direct antiviral effectors which prevent important steps in viral propagation. MAVS localizes at peroxisomes and mitochondria and coordinate the activation of an effective antiviral response: peroxisomal MAVS is responsible for a rapid but short-termed antiviral response, while the mitochondrial MAVS is associated with the activation of a stable response with delayed kinetics. The HCV NS3-4A protease was shown to specifically cleave the mitochondrial MAVS, inhibiting the downstream response. In this study, we have analysed whether HCV NS3-4A is also able to cleave the peroxisomal MAVS and whether this would have any effect on the cellular antiviral response. We show that NS3-4A is indeed able to specifically cleave this protein and release it into the cytosol, a mechanism that seems to occur at a similar kinetic rate as the cleavage of the mitochondrial MAVS. Under these conditions, RIG-I-like receptor (RLR) signalling from peroxisomes is blocked and antiviral gene expression is inhibited. Our results also show that NS3-4A is able to localize at peroxisomes in the absence of MAVS. However, mutation studies have shown that this localization pattern is preferred in the presence of a fully cleavable MAVS. These findings present evidence of a viral evasion strategy that disrupts RLR signalling on peroxisomes and provide an excellent example of how a single viral evasion strategy can block innate immune signalling from different organelles.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Fibroblasts/virology , Mitochondria/virology , Peroxisomes/virology , Viral Nonstructural Proteins/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Cell Line , DEAD Box Protein 58/genetics , DEAD Box Protein 58/immunology , Fibroblasts/immunology , Fibroblasts/ultrastructure , Gene Expression Regulation , Gene Knockout Techniques , Hepacivirus/genetics , Hepacivirus/immunology , Humans , Immune Evasion , Kinetics , Mice , Mitochondria/immunology , Mitochondria/ultrastructure , Mutation , Peroxisomes/immunology , Peroxisomes/ultrastructure , Proteolysis , Signal Transduction/immunology , Viral Nonstructural Proteins/immunology
9.
J Biotechnol ; 217: 82-9, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26506591

ABSTRACT

Cell culture media formulations contain hundreds of individual components in water solutions which have complex interactions with metabolic pathways. The currently used statistical design methods are empirical and very limited to explore such a large design space. In a previous work we developed a computational method called projection to latent pathways (PLP), which was conceived to maximize covariance between envirome and fluxome data under the constraint of metabolic network elementary flux modes (EFM). More specifically, PLP identifies a minimal set of EFMs (i.e., pathways) with the highest possible correlation with envirome and fluxome measurements. In this paper we extend the concept for the analysis of culture media screening data to investigate how culture medium components up-regulate or down-regulate key metabolic pathways. A Pichia pastoris X-33 strain was cultivated in 26 shake flask experiments with variations in trace elements concentrations and basal medium dilution, based on the standard BSM+PTM1 medium. PLP identified 3 EFMs (growth, maintenance and by-product formation) describing 98.8% of the variance in observed fluxes. Furthermore, PLP presented an overall predictive power comparable to that of PLS regression. Our results show iron and manganese at concentrations close to the PTM1 standard inhibit overall metabolic activity, while the main salts concentration (BSM) affected mainly energy expenditures for cellular maintenance.


Subject(s)
Culture Media/analysis , Pichia/metabolism , Down-Regulation , Glycerol/metabolism , Iron/metabolism , Manganese/metabolism , Metabolic Flux Analysis/methods , Metabolic Networks and Pathways , Models, Biological , Pichia/chemistry , Pichia/growth & development , Systems Biology , Trace Elements/metabolism , Up-Regulation
10.
Org Biomol Chem ; 13(34): 9127-39, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26223980

ABSTRACT

First examples of [8π + 2π] cycloaddition of 16-dehydropregnenolone (16-DPA) acetate with diazafulvenium methides leading to chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused steroids are reported. These hexacyclic steroids were obtained exclusively or selectively with the approach of the 1,7-dipole by the less hindered α-face of 16-DPA. Quantum chemical calculations at the DFT level were carried out, using the cycloaddition of 1-methyl- and 1-benzyl-diazafulvenium methides with N-phenylmaleimide as model reactions, in order to rationalize the stereochemistry outcome. The results indicate that endo cycloadditions of the more stable dipole conformation, having the 1-substituent pointing outward, are significantly more favorable than the alternative exo cycloaddition.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Imidazoles/chemistry , Indolequinones/chemistry , Steroids/chemical synthesis , Catalysis , Cyclization , Cycloaddition Reaction , Models, Molecular , Molecular Structure , Stereoisomerism
11.
Int J Biol Macromol ; 79: 611-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26014143

ABSTRACT

In this work, the solution properties of the bacterial fucose-rich polysaccharide, FucoPol, were studied. The effect of pH (3.5-10.0) and ionic strength (0.02-1.0 M NaCl) on the intrinsic viscosity and steady shear flow were evaluated using a central composite rotatable design of experiments and surface response methodology. FucoPol's intrinsic and apparent viscosities presented a quite low variation under a wide range of pH (3.5-8.0) and ionic strength (0.05-0.50 M NaCl) values. FucoPol produced viscous solutions with shear-thinning behavior at different polymer concentrations (0.2-1.2 wt.%). Flow curves were successfully described by the Cross model. The viscosity of the first Newtonian plateau varied from 0.01 to 2.47 Pas for polymer concentrations from 0.2 to 1.2 wt.%, and the dependence of the estimated relaxation time with polymer concentration suggests a large degree of interaction between FucoPol molecules. Given the results obtained, FucoPol is proposed as thickening agent for applications in which stability of the apparent viscosity under pH and ionic strength variations is required.


Subject(s)
Food Additives/chemistry , Polysaccharides, Bacterial/chemistry , Elasticity , Hydrogen-Ion Concentration , Osmolar Concentration , Rheology , Solutions , Viscosity
12.
Int J Biol Macromol ; 71: 111-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24769364

ABSTRACT

FucoPol, an exopolysaccharide produced by Enterobacter A47, grown in bioreactor with glycerol as carbon source, was used with citric acid to obtain biodegradable films by casting. The films were characterized in terms of optical, hygroscopic, mechanical and barrier properties. These films have shown to be transparent, but with a brown tone, imparting small colour changes when applied over coloured surfaces. They were hydrophilic, with high permeability to water vapour (1.01×10(-11)mol/msPa), but presented good barrier properties to oxygen and carbon dioxide (0.7×10(-16)molm/m(2)sPa and 42.7×10(-16)molm/m(2)sPa, respectively). Furthermore, films have shown mechanical properties under tensile tests characteristic of ductile films with high elongation at break, low tension at break and low elastic modulus. Although the obtained results are promising, films properties can be improved, namely by testing alternative plasticizers, crosslinking agents and blends with other biopolymers. Taking into account the observed ductile mechanical properties, good barrier properties to gases when low water content is used and their hydrophilic character, it is foreseen a good potential for FucoPol films to be incorporated as inner layer of a multilayer packaging material.


Subject(s)
Biopolymers/chemistry , Polysaccharides, Bacterial/chemistry , Adsorption , Enterobacter/metabolism , Fermentation , Food Packaging , Mechanical Phenomena , Permeability , Steam
13.
Int J Biol Macromol ; 71: 81-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24751508

ABSTRACT

Enterobacter A47 produces a fucose-containing exopolysaccharide (EPS) by cultivation in mineral medium supplemented with glycerol. EPS synthesis by Enterobacter A47 was shown to be influenced by both the initial glycerol and nitrogen concentrations and by the nutrients' feeding rate during the fed-batch phase. Initial nitrogen concentrations above 1.05g/L were detrimental for EPS synthesis: the productivity was reduced to 0.35-0.62g/Ld (compared to 1.89-2.04g/Ld under lower nitrogen concentrations) and the polymer had lower fucose content (14-17%mol, compared to 36-38%mol under lower nitrogen concentrations). On the other hand, EPS productivity was improved to 5.66g/Ld by increasing the glycerol and nitrogen feeding rates during the fed-batch phase. However, the EPS thus obtained had lower fucose (26%mol) and higher galactose (34%mol) contents, as well as lower average molecular weight (7.2×10(5)). The ability of Enterobacter A47 to synthesize EPS with different physico-chemical characteristics may be useful for the generation of biopolymers with distinct functional properties suitable for different applications.


Subject(s)
Enterobacter/metabolism , Glycerol/metabolism , Nitrogen/metabolism , Polysaccharides, Bacterial/biosynthesis , Batch Cell Culture Techniques , Bioreactors , Culture Media/chemistry , Fermentation
14.
Adv Biochem Eng Biotechnol ; 132: 193-215, 2013.
Article in English | MEDLINE | ID: mdl-23272320

ABSTRACT

In this chapter we explore the basic tools for the design of bioprocess monitoring, optimization, and control algorithms that incorporate a priori knowledge of metabolic networks. The main advantage is that this ultimately enables the targeting of intracellular control variables such as metabolic reactions or metabolic pathways directly linked with productivity and product quality. We analyze in particular design methods that target elementary modes of metabolic networks. The topics covered include the analysis of the structure of metabolic networks, computation and reduction of elementary modes, measurement methods for the envirome, envirome-guided metabolic reconstruction, and macroscopic dynamic modeling and control. These topics are illustrated with applications to a cultivation process of a recombinant Pichia pastoris X33 strain expressing a single-chain antibody fragment (scFv).


Subject(s)
Metabolic Networks and Pathways/physiology , Signal Transduction/physiology , Algorithms , Computational Biology/methods , Models, Biological , Pichia/metabolism , Pichia/physiology , Single-Chain Antibodies/metabolism
15.
BMC Syst Biol ; 5: 181, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22044634

ABSTRACT

BACKGROUND: Elementary flux modes (EFM) are unique and non-decomposable sets of metabolic reactions able to operate coherently in steady-state. A metabolic network has in general a very high number of EFM reflecting the typical functional redundancy of biological systems. However, most of these EFM are either thermodynamically unfeasible or inactive at pre-set environmental conditions. RESULTS: Here we present a new algorithm that discriminates the "active" set of EFM on the basis of dynamic envirome data. The algorithm merges together two well-known methods: projection to latent structures (PLS) and EFM analysis, and is therefore termed projection to latent pathways (PLP). PLP has two concomitant goals: (1) maximisation of correlation between EFM weighting factors and measured envirome data and (2) minimisation of redundancy by eliminating EFM with low correlation with the envirome. CONCLUSIONS: Overall, our results demonstrate that PLP slightly outperforms PLS in terms of predictive power. But more importantly, PLP is able to discriminate the subset of EFM with highest correlation with the envirome, thus providing in-depth knowledge of how the environment controls core cellular functions. This offers a significant advantage over PLS since its abstract structure cannot be associated with the underlying biological structure.


Subject(s)
Algorithms , Metabolic Networks and Pathways , Models, Biological , Animals , Cell Line , Cricetinae , Systems Biology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...