Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Am Nat ; 203(5): 576-589, 2024 May.
Article in English | MEDLINE | ID: mdl-38635359

ABSTRACT

AbstractLong-term social and genetic monogamy is rare in animals except birds, but even in birds it is infrequent and poorly understood. We investigated possible advantages of monogamy in a colonial, facultative cooperatively breeding bird from an arid, unpredictable environment, the sociable weaver (Philetairus socius). We documented divorce and extrapair paternity of 703 pairs over 10 years and separated effects of pair duration from breeding experience by analyzing longitudinal and cross-sectional datasets. Parts of the colonies were protected from nest predation, thereby limiting its stochastic and thus confounding effect on fitness measures. We found that 6.4% of sociable weaver pairs divorced and 2.2% of young were extrapair. Longer pair-bonds were associated with more clutches and fledglings per season and with reproducing earlier and later in the season, when snake predation is lower, but not with increased egg or fledgling mass or with nestling survival. Finally, the number of helpers at the nest increased with pair-bond duration. Results were similar for protected and unprotected nests. We suggest that long-term monogamy is associated with a better capacity for exploiting a temporally unpredictable environment and helps to form larger groups. These results can contribute to our understanding of why long-term monogamy is frequently associated with unpredictable environments and cooperation.


Subject(s)
Pair Bond , Sparrows , Animals , Cross-Sectional Studies , Predatory Behavior , Reproduction
2.
Oecologia ; 202(1): 129-142, 2023 May.
Article in English | MEDLINE | ID: mdl-37148378

ABSTRACT

Prenatal resource allocation to offspring can be influenced by maternal environment and offspring value, and affect offspring survival. An important pathway for flexible maternal allocation is via egg components such as nutrients and hormones. In cooperative breeders, females with helpers may increase resource allocation to eggs-'differential allocation'-or reduce it-'load-lightening'. Yet, helper effects on egg composition have been poorly studied. Moreover, it is unknown how helpers' presence modulates laying order effects on egg content and survival. Here, we investigated how maternal allocation varied with group size and laying order in the cooperatively breeding sociable weaver (Philetairus socius). We estimated interactive effects of helpers and laying order on allocation to egg mass, yolk nutrients-yolk mass, proteins, lipids, carotenoids, vitamin A and vitamin E-and hormones-testosterone, androstenedione, and corticosterone. Results concurred with the 'differential allocation' predictions. Females with more helpers produced later-laid eggs with heavier yolks and more lipids, and laid eggs overall richer in lipids. Proteins, antioxidants, and hormones were not found to vary with helper number. We then analyzed how helper number modulated laying order effects on survival. Females with more helpers did not specifically produce later-laid eggs with higher survival, but eggs laid by females with more helpers were overall more likely to fledge. These findings show that some egg components (yolk mass, lipids) can positively vary according to females' breeding group size, which may improve offspring fitness.


Subject(s)
Lipids , Testosterone , Female , Animals , Testosterone/metabolism , Egg Yolk/metabolism
3.
Front Cell Infect Microbiol ; 13: 1067285, 2023.
Article in English | MEDLINE | ID: mdl-36875528

ABSTRACT

Introduction: Influenza A virus (IAV) is one of the leading causes of respiratory tract infections in humans, representing a major public health concern. The various types of cell death have a crucial role in IAV pathogenesis because this virus may trigger both apoptosis and necroptosis in airway epithelial cells in parallel. Macrophages play an important role in the clearance of virus particles, priming the adaptive immune response in influenza. However, the contribution of macrophage death to pathogenesis of IAV infection remains unclear. Methods: In this work, we investigated IAV-induced macrophage death, along with potential therapeutic intervention. We conducted in vitro and in vivo experiments to evaluate the mechanism and the contribution of macrophages death to the inflammatory response induced by IAV infection. Results: We found that IAV or its surface glycoprotein hemagglutinin (HA) triggers inflammatory programmed cell death in human and murine macrophages in a Toll-like receptor-4 (TLR4)- and TNF-dependent manner. Anti-TNF treatment in vivo with the clinically approved drug etanercept prevented the engagement of the necroptotic loop and mouse mortality. Etanercept impaired the IAV-induced proinflammatory cytokine storm and lung injury. Conclusion: In summary, we demonstrated a positive feedback loop of events that led to necroptosis and exacerbated inflammation in IAV-infected macrophages. Our results highlight an additional mechanism involved in severe influenza that could be attenuated with clinically available therapies.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Animals , Mice , Etanercept , Tumor Necrosis Factor Inhibitors , Apoptosis , Macrophages
4.
Arthroplasty ; 5(1): 7, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759916

ABSTRACT

BACKGROUND: There is currently no consensus regarding the optimal anesthetic technique for total hip and knee arthroplasty (THA, TKA). This study aimed to compare the utilization rates and safety of spinal vs. general anesthesia in contemporary THA/TKA practice. METHODS: Using the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP), a retrospective review of 307,076 patients undergoing total hip or knee arthroplasty under either spinal or general anesthesia between January 2015 and December 2018 was performed. Propensity matching was used to compare differences in operative times, hospital length of stay, discharge destination, and 30-day adverse events. The annual utilization rates for both techniques between 2011 and 2018 were also assessed. RESULTS: Patients receiving spinal anesthesia had a shorter length of stay (P < 0.001) for TKA while no statistical differences in length of stay were observed for THA. Patients were also less likely to experience any 30-day complication (OR = 0.82, P <0.001 and OR = 0.92, P < 0.001 for THA and TKA, respectively) while being more likely to be discharged to home (OR = 1.46, P < 0.001 and OR = 1.44, P < 0.001 for THA and TKA, respectively). Between 2011 and 2018, spinal anesthesia utilization only increased by 1.4% for THA (P < 0.001) and decreased by 0.2% for TKA (P < 0.001), reaching 38.1% and 40.3%, respectively. CONCLUSION: Spinal anesthesia remains a grossly underutilized tool despite providing better perioperative outcomes compared to general anesthesia. As orthopedic surgeons navigate the challenges of value-based care, spinal anesthesia represents an invaluable tool that should be considered the gold standard in elective, primary total hip and knee arthroplasty.

5.
Nat Commun ; 14(1): 199, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639383

ABSTRACT

Orally available antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary because of the continuous circulation of new variants that challenge immunized individuals. Because severe COVID-19 is a virus-triggered immune and inflammatory dysfunction, molecules endowed with both antiviral and anti-inflammatory activity are highly desirable. We identified here that kinetin (MB-905) inhibits the in vitro replication of SARS-CoV-2 in human hepatic and pulmonary cell lines. On infected monocytes, MB-905 reduced virus replication, IL-6 and TNFα levels. MB-905 is converted into its triphosphate nucleotide to inhibit viral RNA synthesis and induce error-prone virus replication. Coinhibition of SARS-CoV-2 exonuclease, a proofreading enzyme that corrects erroneously incorporated nucleotides during viral RNA replication, potentiated the inhibitory effect of MB-905. MB-905 shows good oral absorption, its metabolites are stable, achieving long-lasting plasma and lung concentrations, and this drug is not mutagenic nor cardiotoxic in acute and chronic treatments. SARS-CoV-2-infected hACE-mice and hamsters treated with MB-905 show decreased viral replication, lung necrosis, hemorrhage and inflammation. Because kinetin is clinically investigated for a rare genetic disease at regimens beyond the predicted concentrations of antiviral/anti-inflammatory inhibition, our investigation suggests the opportunity for the rapid clinical development of a new antiviral substance for the treatment of COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , Animals , Humans , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2 , Kinetin/pharmacology , Inflammation/drug therapy , Nucleotides , Virus Replication
6.
J Arthroplasty ; 38(3): 431-436, 2023 03.
Article in English | MEDLINE | ID: mdl-36126887

ABSTRACT

BACKGROUND: While risk factors have been published for readmissions following primary total joint arthroplasty, little is known about the etiology of those costly adverse events. In this study, we sought to identify the reasons for 30-day readmission following primary total joint arthroplasty in a contemporary national patient sample. METHODS: The American College of Surgeons National Surgical Quality Improvement Program was queried to identify 367,199 patients who underwent primary total knee (TKA) or hip arthroplasty (THA) between 2011 and 2018. The primary outcomes were the annual rates of 30-day readmissions and the causes of those readmissions. RESULTS: The 30-day readmission rate trended downward from 4.5% in 2011 to 3.3% in 2018. Medical complications accounted for 52.6% and 38.5% of readmissions following TKA and THA, respectively. Diseases of the circulatory system, abnormal laboratory values, and diseases of the digestive system were the leading causes of medical readmissions. Surgical complications accounted for 37.7% and 50.7% of readmissions following TKA and THA, respectively. Surgical site infections/wound disruption and venous thromboembolism were the leading two causes of surgical readmissions for THA and TKA. Prosthetic complications-namely dislocations and periprosthetic fractures-were the third leading cause of surgical readmissions for THA. For TKA, musculoskeletal conditions-namely pain and hematoma-were the third leading cause of surgical readmissions. CONCLUSION: Medical complications accounted for half of all TKA readmissions and more than a third of THA readmissions. This could penalize institutions participating in value-based payment programs or dissuade others who are considering participation in such programs.


Subject(s)
Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Humans , Patient Readmission , Arthroplasty, Replacement, Knee/adverse effects , Arthroplasty, Replacement, Hip/adverse effects , Risk Factors , Surgical Wound Infection/etiology , Postoperative Complications/epidemiology , Postoperative Complications/etiology
7.
Viruses ; 14(7)2022 06 30.
Article in English | MEDLINE | ID: mdl-35891437

ABSTRACT

Despite the fast development of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still circulating and generating variants of concern (VoC) that escape the humoral immune response. In this context, the search for anti-SARS-CoV-2 compounds is still essential. A class of natural polyphenols known as flavonoids, frequently available in fruits and vegetables, is widely explored in the treatment of different diseases and used as a scaffold for the design of novel drugs. Therefore, herein we evaluate seven flavonoids divided into three subclasses, isoflavone (genistein), flavone (apigenin and luteolin) and flavonol (fisetin, kaempferol, myricetin, and quercetin), for COVID-19 treatment using cell-based assays and in silico calculations validated with experimental enzymatic data. The flavonols were better SARS-CoV-2 inhibitors than isoflavone and flavones. The increasing number of hydroxyl groups in ring B of the flavonols kaempferol, quercetin, and myricetin decreased the 50% effective concentration (EC50) value due to their impact on the orientation of the compounds inside the target. Myricetin and fisetin appear to be preferred candidates; they are both anti-inflammatory (decreasing TNF-α levels) and inhibit SARS-CoV-2 mainly by targeting the processability of the main protease (Mpro) in a non-competitive manner, with a potency comparable to the repurposed drug atazanavir. However, fisetin and myricetin might also be considered hits that are amenable to synthetic modification to improve their anti-SARS-CoV-2 profile by inhibiting not only Mpro, but also the 3'-5' exonuclease (ExoN).


Subject(s)
COVID-19 Drug Treatment , Flavones , Isoflavones , Flavones/pharmacology , Flavonoids/pharmacology , Flavonols/pharmacology , Humans , Isoflavones/pharmacology , Kaempferols , Molecular Docking Simulation , Protease Inhibitors , Quercetin/pharmacology , SARS-CoV-2
8.
J Leukoc Biol ; 111(5): 1107-1121, 2022 05.
Article in English | MEDLINE | ID: mdl-35322471

ABSTRACT

Infection by SARS-CoV-2 may elicit uncontrolled and damaging inflammatory responses. Thus, it is critical to identify compounds able to inhibit virus replication and thwart the inflammatory reaction. Here, we show that the plasma levels of the immunoregulatory neuropeptide VIP are elevated in patients with severe COVID-19, correlating with reduced inflammatory mediators and with survival on those patients. In vitro, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), highly similar neuropeptides, decreased the SARS-CoV-2 RNA content in human monocytes and viral production in lung epithelial cells, also reducing cell death. Both neuropeptides inhibited the production of proinflammatory mediators in lung epithelial cells and in monocytes. VIP and PACAP prevented in monocytes the SARS-CoV-2-induced activation of NF-kB and SREBP1 and SREBP2, transcriptions factors involved in proinflammatory reactions and lipid metabolism, respectively. They also promoted CREB activation, a transcription factor with antiapoptotic activity and negative regulator of NF-kB. Specific inhibition of NF-kB and SREBP1/2 reproduced the anti-inflammatory, antiviral, and cell death protection effects of VIP and PACAP. Our results support further clinical investigations of these neuropeptides against COVID-19.


Subject(s)
COVID-19 , Vasoactive Intestinal Peptide , Humans , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , RNA, Viral , Receptors, Vasoactive Intestinal Polypeptide, Type I , SARS-CoV-2 , Transcription Factors/metabolism , Vasoactive Intestinal Peptide/pharmacology
9.
Viruses ; 14(2)2022 02 11.
Article in English | MEDLINE | ID: mdl-35215969

ABSTRACT

Despite the development of specific therapies against severe acute respiratory coronavirus 2 (SARS-CoV-2), the continuous investigation of the mechanism of action of clinically approved drugs could provide new information on the druggable steps of virus-host interaction. For example, chloroquine (CQ)/hydroxychloroquine (HCQ) lacks in vitro activity against SARS-CoV-2 in TMPRSS2-expressing cells, such as human pneumocyte cell line Calu-3, and likewise, failed to show clinical benefit in the Solidarity and Recovery clinical trials. Another antimalarial drug, mefloquine, which is not a 4-aminoquinoline like CQ/HCQ, has emerged as a potential anti-SARS-CoV-2 antiviral in vitro and has also been previously repurposed for respiratory diseases. Here, we investigated the anti-SARS-CoV-2 mechanism of action of mefloquine in cells relevant for the physiopathology of COVID-19, such as Calu-3 cells (that recapitulate type II pneumocytes) and monocytes. Molecular pathways modulated by mefloquine were assessed by differential expression analysis, and confirmed by biological assays. A PBPK model was developed to assess mefloquine's optimal doses for achieving therapeutic concentrations. Mefloquine inhibited SARS-CoV-2 replication in Calu-3, with an EC50 of 1.2 µM and EC90 of 5.3 µM. It reduced SARS-CoV-2 RNA levels in monocytes and prevented virus-induced enhancement of IL-6 and TNF-α. Mefloquine reduced SARS-CoV-2 entry and synergized with Remdesivir. Mefloquine's pharmacological parameters are consistent with its plasma exposure in humans and its tissue-to-plasma predicted coefficient points suggesting that mefloquine may accumulate in the lungs. Altogether, our data indicate that mefloquine's chemical structure could represent an orally available host-acting agent to inhibit virus entry.


Subject(s)
Alveolar Epithelial Cells/drug effects , Antiviral Agents/pharmacology , Chloroquine/pharmacology , Mefloquine/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/virology , Cell Line , Drug Repositioning/methods , Humans , Serine Endopeptidases/genetics , Virus Internalization/drug effects , COVID-19 Drug Treatment
10.
Ecol Lett ; 25(1): 151-162, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34787354

ABSTRACT

Climate exerts a major influence on reproductive processes, and an understanding of the mechanisms involved and which factors might mitigate adverse weather is fundamental under the ongoing climate change. Here, we study how weather and nest predation influence reproductive output in a social species, and examine whether larger group sizes can mitigate the adverse effects of these factors. We used a 7-year nest predator-exclusion experiment on an arid-region cooperatively breeding bird, the sociable weaver. We found that dry and, especially, hot weather were major drivers of nestling mortality through their influence on nest predation. However, when we experimentally excluded nest predators, these conditions were still strongly associated with nestling mortality. Group size was unimportant against nest predation and, although positively associated with reproductive success, it did not mitigate the effects of adverse weather. Hence, cooperative breeding might have a limited capacity to mitigate extreme weather effects.


Subject(s)
Nesting Behavior , Sparrows , Animals , Predatory Behavior , Reproduction , Temperature
11.
Front Cell Infect Microbiol ; 11: 549020, 2021.
Article in English | MEDLINE | ID: mdl-34490131

ABSTRACT

Influenza A virus (IAV) is the main etiological agent of acute respiratory tract infections. During IAV infection, interferon triggers the overexpression of restriction factors (RFs), the intracellular antiviral branch of the innate immune system. Conversely, severe influenza is associated with an unbalanced pro-inflammatory cytokine release. It is unclear whether other cytokines and chemokines released during IAV infection modulate RFs to control virus replication. Among the molecules enhanced in the infected respiratory tract, ligands of the CCR5 receptor play a key role, as they stimulate the migration of inflammatory cells to the alveoli. We investigated here whether ligands of the CCR5 receptor could enhance RFs to levels able to inhibit IAV replication. For this purpose, the human alveolar basal epithelial cell line (A549) was treated with endogenous (CCL3, CCL4 and CCL5) or exogenous (HIV-1 gp120) ligands prior to IAV infection. The three CC-chemokines tested reduced infectious titers between 30% to 45% upon 24 hours of infection. Eploying RT-PCR, a panel of RF mRNA levels from cells treated with CCR5 agonists was evaluated, which showed that the SAMHD1 expression was up-regulated four times over control upon exposure to CCL3, CCL4 and CCL5. We also found that IAV inhibition by CCL5 was dependent on PKC and that SAMHD1 protein levels were also increased after treatment with CCL5. In functional assays, we observed that the knockdown of SAMHD1 resulted in enhanced IAV replication in A549 cells and abolished both CCL5-mediated inhibition of IAV replication and CCL5-mediated cell death inhibition. Our data show that stimuli unrelated to interferon may trigger the upregulation of SAMHD1 and that this RF may directly interfere with IAV replication in alveolar epithelial cells.


Subject(s)
Influenza A virus , Influenza, Human , Chemokine CCL5 , Humans , SAM Domain and HD Domain-Containing Protein 1 , Virus Replication
13.
J Antimicrob Chemother ; 76(7): 1874-1885, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33880524

ABSTRACT

BACKGROUND: Current approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity. METHODS: SARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19. RESULTS: Daclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 µM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. CONCLUSIONS: Daclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Carbamates , Chlorocebus aethiops , Humans , Imidazoles , Pyrrolidines , RNA, Viral , SARS-CoV-2 , Sofosbuvir/pharmacology , Valine/analogs & derivatives , Vero Cells
14.
Cell Death Discov ; 7(1): 43, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649297

ABSTRACT

Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocyte death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with 2019 coronavirus disease (COVID-19). Here, we show that SARS-CoV-2 engages inflammasome and triggers pyroptosis in human monocytes, experimentally infected, and from patients under intensive care. Pyroptosis associated with caspase-1 activation, IL-1ß production, gasdermin D cleavage, and enhanced pro-inflammatory cytokine levels in human primary monocytes. At least in part, our results originally describe mechanisms by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb to control severe COVID-19.

15.
J Anim Ecol ; 90(5): 1122-1133, 2021 05.
Article in English | MEDLINE | ID: mdl-33550597

ABSTRACT

Females may adjust prenatal allocation in relation to ecological conditions that affect reproductive success, such as weather conditions or predation risk. In cooperative breeders, helpers might also influence reproductive success, and previous studies suggest that females can lay smaller eggs or larger clutches when breeding with more helpers. Although recent work suggests that helper effects can vary according to climatic variables, how social and ecological factors interact to shape prenatal allocation is poorly understood. Here, we examine how ecological and social components of the breeding environment covary with egg mass and clutch size, using as a model the sociable weaver Philetairus socius, a colonial, cooperatively breeding passerine. The study spanned 9 years and included over 1,900 eggs from over 550 clutches. Our analyses combined natural variation in weather conditions (rainfall before each reproductive event) with a nest predator-exclusion experiment and continuous monitoring of the mother's social environment, allowing us to estimate how individual females adjust allocation to reproduction as their number of helpers varies. We found that egg mass varied consistently within females and did not clearly differ in relation to rainfall or predation risk. Contrary to previous studies, there was no evidence for plastic adjustments as females gained and lost helpers, and egg mass was instead better predicted by mother size and identity. Females laid larger clutches when breeding in environments where predation risk was experimentally reduced and after higher rainfall levels. Yet, there was no evidence for increasing clutch size as the number of helpers increased, nor for an interaction between helper effects and ecological factors. We conclude that while sociable weaver females can vary their clutch size, they show high individual consistency in egg mass. In addition, we found no evidence that females may maximize fitness through plastic prenatal allocation in relation to the number of helpers, or that the presence/absence of helper effects is modulated by rainfall levels or predation risk. These results challenge our current knowledge on some of the possible benefits of breeding with helpers and call for more long-term analyses on reproductive allocation adjustments in other cooperative systems.


Subject(s)
Predatory Behavior , Sparrows , Animals , Clutch Size , Female , Reproduction , Social Factors , Weather
16.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35056078

ABSTRACT

Atazanavir (ATV) has already been considered as a potential repurposing drug to 2019 coronavirus disease (COVID-19); however, there are controversial reports on its mechanism of action and effectiveness as anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through the pre-clinical chain of experiments: enzymatic, molecular docking, cell-based and in vivo assays, it is demonstrated here that both SARS-CoV-2 B.1 lineage and variant of concern gamma are susceptible to this antiretroviral. Enzymatic assays and molecular docking calculations showed that SARS-CoV-2 main protease (Mpro) was inhibited by ATV, with Morrison's inhibitory constant (Ki) 1.5-fold higher than GC376 (a positive control) dependent of the catalytic water (H2Ocat) content. ATV was a competitive inhibitor, increasing the Mpro's Michaelis-Menten (Km) more than sixfold. Cell-based assays indicated that different lineages of SARS-CoV-2 is susceptible to ATV. Using oral administration of ATV in mice to reach plasmatic exposure similar to humans, transgenic mice expression in human angiotensin converting enzyme 2 (K18-hACE2) were partially protected against lethal challenge with SARS-CoV-2 gamma. Moreover, less cell death and inflammation were observed in the lung from infected and treated mice. Our studies may contribute to a better comprehension of the Mpro/ATV interaction, which could pave the way to the development of specific inhibitors of this viral protease.

17.
PLoS Pathog ; 16(12): e1009127, 2020 12.
Article in English | MEDLINE | ID: mdl-33326472

ABSTRACT

Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.


Subject(s)
COVID-19/complications , Inflammation Mediators/metabolism , Inflammation/etiology , Lipid Droplets/pathology , SARS-CoV-2/isolation & purification , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Chlorocebus aethiops , Humans , Inflammation/metabolism , Inflammation/pathology , Vero Cells , Virus Replication
18.
Ecol Evol ; 10(17): 9132-9143, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32953051

ABSTRACT

Social network analyses allow studying the processes underlying the associations between individuals and the consequences of those associations. Constructing and analyzing social networks can be challenging, especially when designing new studies as researchers are confronted with decisions about how to collect data and construct networks, and the answers are not always straightforward. The current lack of guidance on building a social network for a new study system might lead researchers to try several different methods and risk generating false results arising from multiple hypotheses testing. Here, we suggest an approach for making decisions when starting social network research in a new study system that avoids the pitfall of multiple hypotheses testing. We argue that best edge definition for a network is a decision that can be made using a priori knowledge about the species and that is independent from the hypotheses that the network will ultimately be used to evaluate. We illustrate this approach with a study conducted on a colonial cooperatively breeding bird, the sociable weaver. We first identified two ways of collecting data using different numbers of feeders and three ways to define associations among birds. We then evaluated which combination of data collection and association definition maximized (a) the assortment of individuals into previously known "breeding groups" (birds that contribute toward the same nest and maintain cohesion when foraging) and (b) socially differentiated relationships (more strong and weak relationships than expected by chance). This evaluation of different methods based on a priori knowledge of the study species can be implemented in a diverse array of study systems and makes the case for using existing, biologically meaningful knowledge about a system to help navigate the myriad of methodological decisions about data collection and network inference.

19.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32759267

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is already responsible for far more deaths than previous pathogenic coronaviruses (CoVs) from 2002 and 2012. The identification of clinically approved drugs to be repurposed to combat 2019 CoV disease (COVID-19) would allow the rapid implementation of potentially life-saving procedures. The major protease (Mpro) of SARS-CoV-2 is considered a promising target, based on previous results from related CoVs with lopinavir (LPV), an HIV protease inhibitor. However, limited evidence exists for other clinically approved antiretroviral protease inhibitors. Extensive use of atazanavir (ATV) as antiretroviral and previous evidence suggesting its bioavailability within the respiratory tract prompted us to study this molecule against SARS-CoV-2. Our results show that ATV docks in the active site of SARS-CoV-2 Mpro with greater strength than LPV, blocking Mpro activity. We confirmed that ATV inhibits SARS-CoV-2 replication, alone or in combination with ritonavir (RTV) in Vero cells and a human pulmonary epithelial cell line. ATV/RTV also impaired virus-induced enhancement of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels. Together, our data strongly suggest that ATV and ATV/RTV should be considered among the candidate repurposed drugs undergoing clinical trials in the fight against COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Atazanavir Sulfate/pharmacology , Betacoronavirus/drug effects , Cytokines/metabolism , Ritonavir/pharmacology , Animals , Atazanavir Sulfate/chemistry , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Death/drug effects , Chlorocebus aethiops , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Therapy, Combination , Humans , Inflammation/metabolism , Inflammation/virology , Lopinavir/pharmacology , Molecular Docking Simulation , Monocytes/virology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Protease Inhibitors/pharmacology , SARS-CoV-2 , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , COVID-19 Drug Treatment
20.
Malar J ; 19(1): 234, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32611348

ABSTRACT

BACKGROUND: Malaria-triggered lung injury can occur in both severe and non-severe cases. Platelets may interact with parasitized erythrocytes, leukocytes and endothelium. These interactions can lead to microvessel obstructions and induce release of inflammatory mediators. Induction of the haem oxygenase enzyme is important in the host's response to free haem and to several other molecules generated by infectious or non-infectious diseases. In addition, an important role for the haem oxygenase-1 isotype has been demonstrated in experimental cerebral malaria and in clinical cases. Therefore, the present work aims to determine the influence of haem oxygenase in thrombocytopaenia and acute pulmonary injury during infection with Plasmodium berghei strain NK65. METHODS: C57BL/6 mice were infected with P. berghei and analysed 7-10 days post-infection. For each experiment, Cobalt Protoporphyrin IX/CoPPIX or saline were administered. Bronchoalveolar lavage fluid was used for total and differential leukocyte count and for protein measurement. Lungs were used for histological analyses or for analysis of cytokines and western blotting. The lung permeability was analysed by Evans blue dye concentration. Platelet-leukocyte aggregate formation was assayed using the flow cytometer. RESULTS: Plasmodium berghei NK65 infection generated an intense lung injury, with increased levels of inflammatory mediators, oedema, and cell migration into the lung. Plasmodium berghei infection was also accompanied by marked thrombocytopaenia and formation of platelet-leukocyte aggregates in peripheral blood. Treatment with the HO-1 inducer cobalt protoporphyrin IX (CoPPIX) modified the inflammatory response but did not affect the evolution of parasitaemia. Animals treated with CoPPIX showed an improvement in lung injury, with decreased inflammatory infiltrate in the lung parenchyma, oedema and reduced thrombocytopaenia. CONCLUSION: Data here presented suggest that treatment with CoPPIX inducer leads to less severe pulmonary lung injury and thrombocytopaenia during malaria infection, thus increasing animal survival.


Subject(s)
Acute Lung Injury/drug therapy , Heme Oxygenase-1/pharmacology , Malaria/complications , Membrane Proteins/pharmacology , Protective Agents/pharmacology , Thrombocytopenia/drug therapy , Acute Lung Injury/etiology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Female , Leukocyte Count , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Plasmodium berghei/physiology , Thrombocytopenia/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...