Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Rev. bras. farmacogn ; 26(5): 611-618, Sept.-Oct. 2016. graf
Article in English | LILACS | ID: lil-796131

ABSTRACT

ABSTRACT Uliginosin B, a phloroglucinol isolated from Hypericum polyanthemum Klotzsch ex Reichardt, Hypericaceae, has antidepressant-like effect in the forced swimming test in rodents and inhibits monoamines neuronal reuptake without binding to their neuronal carriers. Studies showed the involvement of Na+,K+-ATPase brain activity in depressive disorders, as well as the dependence of neuronal monoamine transport from Na+ gradient generated by Na+,K+-ATPase. This study aimed at evaluating the effect of uliginosin B on Na+,K+-ATPase activity in mice cerebral cortex and hippocampus (1 and 3 h after the last administration) as well as the influence of veratrine, a Na+ channel opener, on the antidepressant-like effect of uliginosin B. Mice were treated (p.o.) with uliginosin B single (10 mg/kg) or repeated doses (10 mg/kg/day, 3 days). Acute administration reduced the immobility in the forced swimming test and tail suspension test and increased Na+,K+-ATPase activity in cerebral cortex 1 h after treating, whereas the repeated treatment induced the antidepressant-like effect and increased the Na+,K+-ATPase activity at both times evaluated. None treatment affected the hippocampus enzyme activity. Veratrine pretreatment prevented uliginosin B antidepressant-like effect in the forced swimming test, suggesting the involvement of Na+ balance regulation on this effect. Altogether, these data indicate that uliginosin B reduces the monoamine uptake by altering Na+ gradient.

2.
Int J Biochem Cell Biol ; 54: 20-5, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24980685

ABSTRACT

The present study investigated the effects of hyperprolinemia on oxidative damage to biomolecules (protein, lipids and DNA) and the antioxidant status in blood of rats. The influence of the antioxidants on the effects elicited by proline was also examined. Wistar rats received two daily injections of proline and/or vitamin E plus C (6th-28th day of life) and were killed 12h after the last injection. Results showed that hyperprolinemia induced a significant oxidative damage to proteins, lipids and DNA demonstrated by increased carbonyl content, malondialdehyde levels and a greater damage index in comet assay, respectively. The concomitant antioxidants administration to proline treatment completely prevented oxidative damage to proteins, but partially prevented lipids and DNA damage. We also observed that the non-enzymatic antioxidant potential was decreased by proline treatment and partially prevented by antioxidant supplementation. The plasma levels of vitamins E and C significantly increased in rats treated exogenously with these vitamins but, interestingly, when proline was administered concomitantly with vitamin E plus C, the levels of these vitamins were similar to those found in plasma of control and proline rats. Our findings suggest that hyperprolinemia promotes oxidative damage to the three major classes of macromolecules in blood of rats. These effects were accomplished by decrease in non-enzymatic antioxidant potential and decrease in vitamins administered exogenously, which significantly decreased oxidative damage to biomolecules studied. These data suggest that antioxidants may be an effective adjuvant therapeutic to limit oxidative damage caused by proline.


Subject(s)
Amino Acid Metabolism, Inborn Errors/physiopathology , Antioxidants/pharmacology , DNA Damage/drug effects , DNA/chemistry , Lipids/chemistry , Oxidative Stress/drug effects , Proline Oxidase/deficiency , Proteins/chemistry , 1-Pyrroline-5-Carboxylate Dehydrogenase/deficiency , Animals , Ascorbic Acid/pharmacology , Dietary Supplements , Male , Malondialdehyde/metabolism , Oxidation-Reduction , Proline/chemistry , Rats , Rats, Wistar , Vitamin E/pharmacology , Vitamins/pharmacology
3.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 36(2): 138-142, may. 13, 2014. graf
Article in English | LILACS | ID: lil-710202

ABSTRACT

Objectives: Fenproporex is an amphetamine-based anorectic which is rapidly converted into amphetamine in vivo. Na+, K+-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that the effects of fenproporex on brain metabolism are poorly known and that Na+, K+-ATPase is essential for normal brain function, this study sought to evaluate the effect of this drug on Na+, K+-ATPase activity in the hippocampus, hypothalamus, prefrontal cortex, and striatum of young rats. Methods: Young male Wistar rats received a single injection of fenproporex (6.25, 12.5, or 25 mg/kg intraperitoneally) or polysorbate 80 (control group). Two hours after the last injection, the rats were killed by decapitation and the brain was removed for evaluation of Na+, K+-ATPase activity. Results: Fenproporex decreased Na+, K+-ATPase activity in the striatum of young rats at doses of 6.25, 12.5, and 25 mg/kg and increased enzyme activity in the hypothalamus at the same doses. Na+, K+-ATPase activity was not affected in the hippocampus or prefrontal cortex. Conclusion: Fenproporex administration decreased Na+, K+-ATPase activity in the striatum even in low doses. However, in the hypothalamus, Na+, K+-ATPase activity was increased. Changes in this enzyme might be the result of the effects of fenproporex on neuronal excitability. .


Subject(s)
Animals , Male , Amphetamines/administration & dosage , Brain/drug effects , Brain/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Injections, Intraperitoneal , Rats, Wistar , Time Factors
4.
Nutr Neurosci ; 17(3): 127-37, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24621057

ABSTRACT

Previous studies have demonstrated that early environmental interventions influence the consumption of palatable food and the abdominal fat deposition in female rats chronically exposed to a highly caloric diet in adulthood. In this study, we verified the metabolic effects of chronic exposure to a highly palatable diet, and determine the response to its withdrawal in adult neonatally handled and non-handled rats. Consumption of foods (standard lab chow and chocolate), body weight gain, abdominal fat deposition, plasma triglycerides, and leptin, as well as serum butyrylcholinesterase (BuChE), and cerebral acetylcholinesterase (AChE) activities were measured during chronic chocolate exposure and after deprivation of this palatable food in female rats exposed or not to neonatal handling (10 minutes/day, 10 first days of life). Handled rats increased rebound chocolate consumption in comparison to non-handled animals after 1 week of chocolate withdrawal; these animals also decreased body weight in the first 24 hours but this effect disappeared after 7 days of withdrawal. Chocolate increased abdominal fat in non-handled females, and this effect remained after 30 days of withdrawal; no differences in plasma leptin were seen after 7 days of withdrawal. Chocolate also increased serum BuChE activity in non-handled females, this effect was still evident after 7 days of withdrawal, but it disappeared after 30 days of withdrawal. Chocolate deprivation decreased cerebral AChE activity in both handled and non-handled animals. These findings suggest that neonatal handling modulates the preference for palatable food and induces a specific metabolic response that may be more adaptive in comparison to non-handled rats.


Subject(s)
Animals, Newborn/physiology , Behavior, Animal , Diet , Environment , Handling, Psychological , Abdominal Fat , Acetylcholinesterase/metabolism , Adaptation, Psychological , Animals , Brain/enzymology , Butyrylcholinesterase/blood , Cacao , Energy Intake , Feeding Behavior/psychology , Female , Food Preferences/psychology , Leptin/blood , Obesity, Abdominal/etiology , Obesity, Abdominal/psychology , Pregnancy , Rats , Rats, Wistar , Stress, Psychological , Substance Withdrawal Syndrome , Triglycerides/blood , Weight Gain
5.
Physiol Behav ; 124: 23-32, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24184408

ABSTRACT

Pre-puberty is a critical period for the final maturation of the neural circuits that control energy homeostasis, as external stimuli such as exposure to diets and stress may influence the adaptive responses with long-term repercussions. Our aim is to investigate the effects of isolation stress during early life and of chronic access to palatable diets, rich in sugar or fat, on the metabolic profile (glycemia, plasma lipids, leptin and cholinesterase activity) and oxidative stress parameters in the livers of adult male rats. We observed changes mainly in animals that received the high-fat diet (increased body weight and abdominal fat in adults, as well as increased plasma glucose, and cholinesterase activity), and most of these effects were further increased by exposure to stress. High-fat diet also affected the rats' lipid profile (increased cholesterol, LDL-cholesterol and triglycerides); these effects were more marked in stressed animals. Additionally, exposure to stress led to an oxidative imbalance in the liver, by increasing production of reactive species, as well as the activity of antioxidant enzymes (superoxide dismutase and catalase); these effects were accentuated with the high-fat diet (which also caused a severe reduction in glutathione peroxidase activity). Taken together, these results show that the pre-pubertal period constitutes a critical window for stressful interventions during development, leading to alterations in metabolic parameters and increased oxidative stress during adulthood that may be more pronounced in animals that receive a high-fat diet.


Subject(s)
Abdominal Fat/growth & development , Adrenal Glands/growth & development , Aging/metabolism , Lipids/blood , Liver/metabolism , Oxidative Stress/drug effects , Social Isolation , Abdominal Fat/drug effects , Abdominal Fat/metabolism , Aging/drug effects , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Catalase/metabolism , Cholinesterases/blood , Dietary Fats/pharmacology , Dietary Sucrose/pharmacology , Eating/drug effects , Energy Intake/drug effects , Free Radicals/metabolism , Glutathione Peroxidase/metabolism , Leptin/blood , Liver/drug effects , Male , Organ Size , Rats , Sulfhydryl Compounds/metabolism , Superoxide Dismutase/metabolism
6.
Braz J Psychiatry ; 36(2): 138-42, 2014.
Article in English | MEDLINE | ID: mdl-24217638

ABSTRACT

OBJECTIVES: Fenproporex is an amphetamine-based anorectic which is rapidly converted into amphetamine in vivo. Na+, K+-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that the effects of fenproporex on brain metabolism are poorly known and that Na+, K+-ATPase is essential for normal brain function, this study sought to evaluate the effect of this drug on Na+, K+-ATPase activity in the hippocampus, hypothalamus, prefrontal cortex, and striatum of young rats. METHODS: Young male Wistar rats received a single injection of fenproporex (6.25, 12.5, or 25 mg/kg intraperitoneally) or polysorbate 80 (control group). Two hours after the last injection, the rats were killed by decapitation and the brain was removed for evaluation of Na+, K+-ATPase activity. RESULTS: Fenproporex decreased Na+, K+-ATPase activity in the striatum of young rats at doses of 6.25, 12.5, and 25 mg/kg and increased enzyme activity in the hypothalamus at the same doses. Na+, K+-ATPase activity was not affected in the hippocampus or prefrontal cortex. CONCLUSION: Fenproporex administration decreased Na+, K+-ATPase activity in the striatum even in low doses. However, in the hypothalamus, Na+, K+-ATPase activity was increased. Changes in this enzyme might be the result of the effects of fenproporex on neuronal excitability.


Subject(s)
Amphetamines/administration & dosage , Brain/drug effects , Brain/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Injections, Intraperitoneal , Male , Rats, Wistar , Time Factors
7.
Neurochem Res ; 39(2): 384-93, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24368626

ABSTRACT

The first 2 weeks of life are a critical period for neural development in rats. Repeated long-term separation from the dam is considered to be one of the most potent stressors to which rat pups can be exposed, and permanently modifies neurobiological and behavioral parameters. Prolonged periods of maternal separation (MS) usually increase stress reactivity during adulthood, and enhance anxiety-like behavior. The aim of this study was to verify the effects of maternal separation during the neonatal period on memory as well as on biochemical parameters (Na(+), K(+)-ATPase and antioxidant enzymes activities) in the amygdala of adult rats. Females and male Wistar rats were subjected to repeated maternal separation (incubator at 32 °C, 3 h/day) during postnatal days 1-10. At 60 days of age, the subjects were exposed to a Contextual fear conditioning task. One week after the behavioral task, animals were sacrificed and the amygdala was dissected for evaluation of Na(+), K(+)-ATPase and antioxidant enzymes activities. Student-t test showed significant MS effect, causing an increase of freezing time in the three exposures to the aversive context in both sexes. Considering biochemical parameters Student-t test showed significant MS effect causing an increase of Na(+), K(+)-ATPase activity in both sexes. On the other hand, no differences were found among the groups on the antioxidant enzymes activities [superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT)] in male rats, but in females, we found a significant MS effect, causing an increase of CAT activity and no differences were found among the groups on SOD and GPx activities. Our results suggest a role of early rearing environment in programming fear learning and memory in adulthood. An early stress experience such as maternal separation may increase activity in the amygdala (as pointed by the increased activity of Na(+), K(+)-ATPase), affecting behaviors related to fear in adulthood, and this effect could be task-specific.


Subject(s)
Amygdala/physiology , Conditioning, Classical , Fear , Amygdala/enzymology , Animals , Catalase/metabolism , Female , Glutathione Peroxidase/metabolism , Male , Oxidative Stress , Pregnancy , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
8.
Neurochem Res ; 38(11): 2342-50, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24013887

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder whose pathogenesis involves production and aggregation of amyloid-ß peptide (Aß). Aß-induced toxicity is believed to involve alterations on as Na(+),K(+)-ATPase and acetylcholinesterase (AChE) activities, prior to neuronal death. Drugs able to prevent or to reverse these biochemical changes promote neuroprotection. GM1 is a ganglioside proposed to have neuroprotective roles in AD models, through mechanisms not yet fully understood. Therefore, this study aimed to investigate the effect of Aß1-42 infusion and GM1 treatment on recognition memory and on Na(+),K(+)-ATPase and AChE activities, as well as, on antioxidant defense in the brain cortex and the hippocampus. For these purposes, Wistar rats received i.c.v. infusion of fibrilar Aß1-42 (2 nmol) and/or GM1 (0.30 mg/kg). Behavioral and biochemical analyses were conducted 1 month after the infusion procedures. Our results showed that GM1 treatment prevented Aß-induced cognitive deficit, corroborating its neuroprotective function. Aß impaired Na(+),K(+)-ATPase and increase AChE activities in hippocampus and cortex, respectively. GM1, in turn, has partially prevented Aß-induced alteration on Na(+),K(+)-ATPase, though with no impact on AChE activity. Aß caused a decrease in antioxidant defense, specifically in hippocampus, an effect that was prevented by GM1 treatment. GM1, both in cortex and hippocampus, was able to increase antioxidant scavenge capacity. Our results suggest that Aß-triggered cognitive deficit involves region-specific alterations on Na(+),K(+)-ATPase and AChE activities, and that GM1 neuroprotection involves modulation of Na(+),K(+)-ATPase, maybe by its antioxidant properties. Although extrapolation from animal findings is difficult, it is conceivable that GM1 could play an important role in AD treatment.


Subject(s)
Acetylcholinesterase/metabolism , Amyloid beta-Peptides/pharmacology , G(M1) Ganglioside/pharmacology , Neuroprotective Agents/pharmacology , Peptide Fragments/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Acetylcholinesterase/drug effects , Animals , Injections, Intraventricular , Male , Memory/drug effects , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/drug effects
9.
Neurochem Res ; 37(8): 1801-10, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22573388

ABSTRACT

The effects of neonatal handling and the absence of ovarian hormones on the olfactory memory related to a palatable food in adulthood were investigated. Oxidative stress parameters and Na+/K+-ATPase activity in the hippocampus and olfactory bulb of adult pre-puberty ovariectomized female rats handled or not in the neonatal period were also evaluated. Litters were non-handled or handled (10 min/day, days 1-10 after birth). Females from each litter were divided into: OVX (subjected to ovariectomy), sham, and intact. When adults, olfactory memory related to a palatable food (chocolate) was evaluate using the hole-board olfactory task. Additionally, oxidative stress parameters and Na+/K+-ATPase activity were measured in the hippocampus and olfactory bulb. No difference between groups was observed considering olfactory memory evaluation. Neonatal handled rats presented an increase in Na+/K+-ATPase activity in the hippocampus and in the olfactory bulb, compared to non-handled ones. Considering the surgical procedure, there was a decrease in Na+/K+-ATPase and catalase activities in sham and OVX groups, compared to intact animals in the olfactory bulb. We concluded that olfactory memory related to a palatable food in adulthood was not affected by neonatal handling or by pre-puberty surgery, with or without removal of ovaries. The difference observed between groups in catalase and Na+/K+-ATPase activity does not seem to be related to the olfactory memory. Additionally, the increase in Na+/K+-ATPase activity (an enzyme that maintains the neurochemical gradient necessary for neuronal excitability) induced by neonatal handling may be related to neuroplastic changes in the hippocampus and olfactory bulb.


Subject(s)
Handling, Psychological , Hippocampus/metabolism , Memory/physiology , Olfactory Bulb/metabolism , Olfactory Perception/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Animal Feed , Animals , Catalase/metabolism , Female , Glutathione Peroxidase/metabolism , Ovariectomy , Oxidative Stress/physiology , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Taste
10.
Int J Dev Neurosci ; 30(5): 369-74, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22525229

ABSTRACT

Homocysteine is a neurotoxic amino acid that accumulates in several disorders including homocystinuria, neurodegenerative and neuroinflammatory diseases. In the present study we evaluated the effect of acute and chronic hyperhomocysteinemia on Akt, NF-κB/p65, GSK-3ß, as well as Tau protein in hippocampus of rats. For acute treatment, rats received a single injection of homocysteine (0.6 µmol/g body weight) or saline (control). For chronic treatment, rats received daily subcutaneous injections of homocysteine (0.3-0.6 µmol/g body weight) or saline (control) from the 6th to the 28th days-of-age. One or 12h after the last injection, rats were euthanized, the hippocampus was removed and samples were submitted to electrophoresis followed by Western blotting. Results showed that acute hyperhomocysteinemia increases Akt phosphorylation, cytosolic and nuclear immunocontent of NF-κB/p65 subunit and Tau protein phosphorylation, but reduces GSK-3ß phosphorylation at 1h after homocysteine injection. However, 12h after acute hyperhomocysteinemia there is no effect on Akt and GSK-3ß phosphorylation. Furthermore, chronic hyperhomocysteinemia did not alter Akt and GSK-3ß phosphorylation at 1h and 12h after the last administration of this amino acid. Our data showed that Akt, NF-κB/p65, GSK-3ß and Tau protein are activated in hippocampus of rats subjected to acute hyperhomocysteinemia, suggesting that these signaling pathways may be, at least in part, important contributors to the neuroinflammation and/or brain dysfunction observed in some hyperhomocystinuric patients.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Glycogen Synthase Kinase 3/metabolism , Hyperhomocysteinemia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytosol/drug effects , Cytosol/metabolism , Disease Models, Animal , Gene Expression Regulation, Enzymologic/drug effects , Glycogen Synthase Kinase 3 beta , Homocysteine/adverse effects , Hyperhomocysteinemia/chemically induced , NF-kappa B/metabolism , Phosphorylation/drug effects , Rats , Rats, Wistar , Signal Transduction/drug effects , Time Factors , tau Proteins/metabolism
11.
Neurochem Res ; 37(8): 1660-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22484967

ABSTRACT

This study investigated the effects of chronic homocysteine administration on some parameters of inflammation, such as cytokines (TNF-α, IL-1ß and IL-6), chemokine CCL(2) (MCP-1), nitrite and prostaglandin E(2) levels, as well as on immunocontent of NF-κB/p65 subunit in hippocampus and/or serum of rats. Since acetylcholinesterase has been associated with inflammation, we also evaluated the effect of homocysteine on this enzyme activity in hippocampus of rats. Wistar rats received daily subcutaneous injections of homocysteine (0.3-0.6 µmol/g body weight) or saline (control) from the 6th to the 28th days-of-age. One or 12 h after the last injection, rats were euthanized and hippocampus and serum were used. Results showed that chronic hyperhomocysteinemia significantly increased pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6), chemokine CCL(2) (MCP-1) and prostaglandin E(2) in hippocampus and serum of rats at 1 and 12 h after the last injection of homocysteine. Nitrite levels increased in hippocampus, but decreased in serum at 1 h after chronic hyperhomocysteinemia. Acetylcholinesterase activity and immunocontent of citoplasmic and nuclear NF-κB/p65 subunit were increased in hippocampus of rats subjected to hyperhomocysteinemia at 1 h, but did not alter at 12 h after the last injection of homocysteine. According to our results, chronic hyperhomocysteinemia increases inflammatory parameters, suggesting that this process might be associated, at least in part, with the cerebrovascular and vascular dysfunctions characteristic of some homocystinuric patients.


Subject(s)
Biomarkers/blood , Hippocampus/metabolism , Hyperhomocysteinemia/blood , Acetylcholinesterase/blood , Animals , Chemokine CCL2/blood , Dinoprostone/blood , Homocystinuria/complications , Homocystinuria/physiopathology , Interleukin-1beta/blood , Interleukin-6/blood , Nitrites/blood , Rats , Rats, Wistar , Transcription Factor RelA/blood , Tumor Necrosis Factor-alpha/blood
12.
Int J Dev Neurosci ; 30(2): 69-74, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22244886

ABSTRACT

The influence of physical exercise on the effects elicited by homocysteine on glutamate uptake and some parameters of oxidative stress, namely thiobarbituric acid-reactive substances, 2',7'-dichlorofluorescein (H(2)DCF) oxidation, as well as enzymatic antioxidant activities, superoxide dismutase, catalase and glutathione peroxidase in rat cerebral cortex were investigated. Wistar rats received subcutaneous administration of homocysteine or saline (control) from the 6th to 29th day of life. The physical exercise was performed from the 30th to 60th day of life; 12 h after the last exercise session animals were sacrificed and the cerebral cortex was dissected out. It is shown that homocysteine reduces glutamate uptake increases thiobarbituric acid-reactive substances and disrupts enzymatic antioxidant defenses in cerebral cortex. Physical activity reversed the homocysteine effects on glutamate uptake and on antioxidant enzymes activities; although the increase in thiobarbituric acid-reactive substances was only partially reversed by exercise. These findings allow us to suggest that physical exercise may have a protective role against homocysteine-induced oxidative imbalance and brain damage to the glutamatergic system.


Subject(s)
Brain Diseases, Metabolic/therapy , Exercise Therapy/methods , Glutamic Acid/metabolism , Hyperhomocysteinemia/therapy , Oxidative Stress/physiology , Physical Conditioning, Animal/physiology , Animals , Animals, Newborn , Brain Diseases, Metabolic/physiopathology , Disease Models, Animal , Hyperhomocysteinemia/physiopathology , Oxidative Stress/drug effects , Rats , Rats, Wistar
13.
Neurochem Res ; 37(1): 126-33, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21909956

ABSTRACT

This study was carried out to ascertain the effects of maternal separation (3 h per day) of mothers from their pups in the neonatal period in rats, which has been suggested to induce a depressive-like state, would have long lasting effects on different parameters including hippocampal Na(+), K(+)-ATPase activity, NO production, free radical production and antioxidant enzymes activities in dams. Fourty-eight Wistar rats were divided into 3 groups: control, brief separation (10 min) and long separation (3 h). The neonatal interventions were done on postpartum days 1-10. At 35 days post-partum the dams were killed and the hippocampal Na(+), K(+)-ATPase activity were measured, as well as the activity of the antioxidant enzymes catalase, glutathione peroxidase, superoxide dismutase, free radicals production, and the production of nitric oxide. Hippocampal Na(+), K(+)-ATPase activity was decreased in the brief separated group and in dams subjected to 3 h separation from their pups. A reduction in nitric oxide levels in the hippocampus in dams of the long separated group was also observed. It is concluded that the withdrawal of pups from their mothers make the mothers more susceptible to the development of neurochemical alterations that could be related to depressive features.


Subject(s)
Behavior, Animal , Depression/pathology , Disease Models, Animal , Animals , Depression/psychology , Female , Hippocampus/enzymology , Hippocampus/metabolism , Nitric Oxide/biosynthesis , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism
14.
Neurochem Res ; 37(1): 205-13, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21935728

ABSTRACT

This study investigated the effects of acute and chronic hyperprolinemia on glutamate uptake, as well as some mechanisms underlying the proline effects on glutamatergic system in rat cerebral cortex. The protective role of guanosine on effects mediated by proline was also evaluated. Results showed that acute and chronic hyperprolinemia reduced glutamate uptake, Na(+), K(+)-ATPase activity, ATP levels and increased lipoperoxidation. GLAST and GLT-1 immunocontent were increased in acute, but not in chronic hyperprolinemic rats. Our data suggest that the effects of proline on glutamate uptake may be mediated by lipid peroxidation and disruption of Na(+), K(+)-ATPase activity, but not by decreasing in glutamate transporters. This probably induces excitotoxicity and subsequent energy deficit. Guanosine was effective to prevent most of the effects promoted by proline, reinforcing its modulator role in counteracting the glutamate toxicity. However, further studies are needed to assess the modulatory effects of guanosine on experimental hyperprolinemia.


Subject(s)
Amino Acid Metabolism, Inborn Errors/physiopathology , Brain/physiopathology , Glutamic Acid/metabolism , Guanosine/pharmacology , Homeostasis , Neuroprotective Agents/pharmacology , 1-Pyrroline-5-Carboxylate Dehydrogenase/deficiency , Adenosine Triphosphate/metabolism , Animals , Blotting, Western , Proline Oxidase/deficiency , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
15.
Mol Cell Biochem ; 362(1-2): 187-94, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22045065

ABSTRACT

Since mild hyperhomocysteinemia is a risk factor for cardiovascular and cerebral diseases and extracellular nucleotides/nucleosides, which are controlled by the enzymatic action of ectonucleotidases, can induce an immune response, in the present study, we investigated the effect of chronic mild hyperhomocysteinemia on ectonucleotidase activities and expression in lymphocytes from mesenteric lymph nodes and serum of adult rats. For the chronic chemically induced mild hyperhomocysteinemia, Hcy (0.03 µmol/g of body weight) or saline (control) were administered subcutaneously from the 30th to the 60th day of life. Results showed that homocysteine significantly decreased ATP, ADP, and AMP hydrolysis in lymphocytes of adult rats. E-NTPDases transcriptions were not affected, while the ecto-5'-nucleotidase transcription was significantly decreased in mesenteric lymph nodes of hyperhomocysteinemic rats. ATP, ADP, and AMP hydrolysis were not affected by homocysteine in rat serum. Our findings suggest that Hcy in levels similar to considered risk factor to development of vascular diseases modulates the ectonucleotidases, which could lead to a pro-inflammatory status.


Subject(s)
5'-Nucleotidase/biosynthesis , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Hyperhomocysteinemia/metabolism , Lymphocytes/metabolism , 5'-Nucleotidase/genetics , Animals , Homocysteine/blood , Hyperhomocysteinemia/genetics , Hyperhomocysteinemia/pathology , Lymphocytes/immunology , Lymphocytes/pathology , Mesentery , Rats , Rats, Wistar
16.
J Cell Biochem ; 113(1): 174-83, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21882227

ABSTRACT

The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation.


Subject(s)
Amino Acid Metabolism, Inborn Errors/chemically induced , Amino Acid Metabolism, Inborn Errors/metabolism , Liver/metabolism , Oxidative Stress , Proline/administration & dosage , 1-Pyrroline-5-Carboxylate Dehydrogenase/deficiency , Animals , Antioxidants/analysis , Blood Glucose/analysis , Catalase/metabolism , Female , Fluoresceins/metabolism , Glutathione/analysis , Glutathione Peroxidase/metabolism , Glycogen/biosynthesis , Lipids/biosynthesis , Male , Proline Oxidase/deficiency , Proline Oxidase/metabolism , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/analysis
17.
Clin Biochem ; 45(1-2): 77-81, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22079397

ABSTRACT

OBJECTIVE: We investigated the relationship between butyrylcholinesterase (BuChE) activity and lipid oxidative damage in patients with disorders of propionate metabolism, before and after treatment with protein restriction and L-carnitine. DESIGN AND METHODS: BuChE activity and malondialdehyde (MDA) were measured in plasma from eight untreated patients (at diagnosis) and from seven patients under treatment with protein restriction and L-carnitne supplementation (100mg/kg/day). RESULTS: We verified a significant reduction of butyrylcholinesterase activity, as well as an increased MDA formation in plasma from untreated patients. However, treated patients presented MDA and BuChE activity similar to controls. Furthermore, butyrylcholinesterase activity was negatively correlated with MDA concentrations in these patients. CONCLUSION: The results suggest that an increased free radicals formation may be involved in the decrease of butyrylcholinesterase activity, possibly contributing to the neurological damage of these disorders, and that treatment with L-carnitine and low-protein diet possibly is able to prevent this damage.


Subject(s)
Butyrylcholinesterase/blood , Butyrylcholinesterase/metabolism , Carnitine/pharmacology , Propionates/metabolism , Proteins/metabolism , Carnitine/chemistry , Child , Child, Preschool , Free Radicals , Humans , Infant , Infant, Newborn , Lipid Peroxidation , Lipids/chemistry , Malondialdehyde/metabolism , Oxidative Stress
18.
Neurochem Res ; 36(12): 2373-80, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21822921

ABSTRACT

Learning and memory deficits occur in depression and other stress related disorders. Although the pathogenesis of cognitive impairment after stress has not been fully elucidated, factors such as oxidative stress and neurotrophins are thought to play possible roles. Here we investigated the effect of treatment with vitamin E (40 mg/kg) and vitamin C (100 mg/kg) on the effects elicited by chronic variable stress on rat performance in Morris water maze. Brain-derived neurotrophic factor (BDNF) immunocontent was also evaluated in hippocampus of rats. Sixty-day old Wistar rats were submitted to different stressors for 40 days (stressed group). Half of stressed group received administration of vitamins once a day, during the period of stress. Chronically stressed rats presented a marked decrease in reference memory in the water maze task as well as a reduced efficiency to find the platform in the working memory task. Rats treated with vitamins E and C had part of the above effects prevented, suggesting the participation of oxidative stress in such effects. The BDNF levels were not altered in hippocampus of stressed group when compared to controls. Our findings lend support to a novel therapeutic strategy, associated with these vitamins, to the cognitive dysfunction observed in depression and other stress related diseases.


Subject(s)
Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Memory Disorders/drug therapy , Stress, Psychological/psychology , Vitamin E/therapeutic use , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cognition Disorders/drug therapy , Male , Maze Learning/drug effects , Rats , Rats, Wistar
19.
Mol Cell Biochem ; 358(1-2): 153-60, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21717134

ABSTRACT

Tissue accumulation of homocysteine occurs in classical homocystinuria, a metabolic disease characterized biochemically by cystathionine ß-synthase deficiency. Vascular manifestations such as myocardial infarction, cerebral thrombosis, hepatic steatosis, and pulmonary embolism are common in this disease and poorly understood. In this study, we investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative stress (thiobarbituric acid-reactive substances, protein carbonyl content, 2',7'-dichlorofluorescein fluorescence assay, and total radical-trapping antioxidant potent) and activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) in the rat lung. Reduced glutathione content and glucose 6-phosphate dehydrogenase activity, as well as nitrite levels, were also evaluated. Wistar rats received daily subcutaneous injections of Hcy (0.3-0.6 µmol/g body weight) from the 6th to the 28th days-of-age and the control group received saline. One and 12 h after the last injection, rats were killed and the lungs collected. Hyperhomocysteinemia increased lipid peroxidation and oxidative damage to protein, and disrupted antioxidant defenses (enzymatic and non-enzymatic) in the lung of rats, characterizing a reliable oxidative stress. In contrast, this amino acid did not alter nitrite levels. Our findings showed a consistent profile of oxidative stress in the lung of rats, elicited by homocysteine, which could explain, at least in part, the mechanisms involved in the lung damage that is present in some homocystinuric patients.


Subject(s)
Hyperhomocysteinemia/pathology , Lung/pathology , Oxidative Stress , Animals , Catalase/metabolism , Chronic Disease , Fluoresceins/metabolism , Fluorescence , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Homocysteine/administration & dosage , Homocysteine/pharmacology , Hyperhomocysteinemia/enzymology , Lung/enzymology , Models, Biological , Nitrites/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
20.
Neurochem Res ; 36(12): 2306-15, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21792675

ABSTRACT

This study investigated whether physical exercise would reverse proline-induced performance deficits in water maze tasks, as well as its effects on brain-derived neurotrophic factor (BDNF) immunocontent and brain acetylcholinesterase (AChE) activity in Wistar rats. Proline administration followed partial time (6th-29th day of life) or full time (6th-60th day of life) protocols. Treadmill exercise was performed from 30th to 60th day of life, when behavioral testing was started. After that, animals were sacrificed for BDNF and AChE determination. Results show that proline impairs cognitive performance, decreases BDNF in cerebral cortex and hippocampus and increases AChE activity in hippocampus. All reported effects were prevented by exercise. These results suggest that cognitive, spatial learning/memory, deficits caused by hyperprolinemia may be associated, at least in part, to the decrease in BDNF levels and to the increase in AChE activity, as well as support the role of physical exercise as a potential neuroprotective strategy.


Subject(s)
Amino Acid Metabolism, Inborn Errors/physiopathology , Cognition Disorders/therapy , Maze Learning/drug effects , Memory/drug effects , Physical Conditioning, Animal , 1-Pyrroline-5-Carboxylate Dehydrogenase/deficiency , Acetylcholinesterase/metabolism , Amino Acid Metabolism, Inborn Errors/psychology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Male , Proline Oxidase/deficiency , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...