Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zygote ; 25(3): 288-295, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28399947

ABSTRACT

Cooling techniques have several applications for reproduction in aquaculture. However, few studies have sought to create protocols for cooling and cryopreservation of Macrobrachium amazonicum embryos. Thus, the objective of this work was to verify the survival of M. amazonicum embryos and the correlation between embryonic volume and mortality of M. amazonicum embryos after cooling. Embryo pools were collected from three females and divided into two treatment groups: dimethyl sulfoxide (DMSO) 3% and ethylene glycol (EG) 0.5%, both of them associated with 2 M sucrose. Positive and negative control groups consisted of seawater 10%. Aliquots of 10 µg of embryos were placed in Falcon® tubes containing a cryoprotectant solution and submitted directly to the test temperature of 2°C for 2 and 6 h of cooling. Further analysis of survival and embryonic volume were performed under a stereoscopic microscope. Data were subjected to analysis of variance (ANOVA), and means were compared using the Tukey test at 5%. The highest embryonic survival rate was observed after the shortest storage time for both the DMSO 3% and the 0.5% EG groups, with survival rates of 84.8 ± 3.9 and 79.7 ± 2.8%, respectively. There was a reduction in survival after 24 h, with the DMSO 3% group presenting a survival rate of 71.7 ± 6.6%, and the EG 0.5% group, 66 ± 6.9%. Survival showed a statistically significant difference when compared with the positive controls after 2 h and 24 h of cooling, with 99 ± 0.5% and 95.8 ± 1.5% survival rates, respectively. There was no significant statistical difference in the embryonic volume, but it was possible to observe a change in the appearance of the embryos, from a translucent coloration to an opaque white or brownish coloration, after 24 h in incubators. Thus, it can be concluded that survival is inversely proportional to storage time and that, although there was no change in the embryonic volume after cooling, a change in the appearance of embryos could be observed.


Subject(s)
Cryopreservation/methods , Embryo, Nonmammalian/physiology , Palaemonidae/embryology , Animals , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Embryo Culture Techniques/methods , Embryo, Nonmammalian/drug effects , Ethylene Glycol/pharmacology , Female , Survival Rate
2.
Zygote ; 23(6): 813-20, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25255785

ABSTRACT

The process of cooling and cryopreservation of prawn embryos is a viable alternative for a continuous supply of larvae for freshwater prawn farming ponds. However, studies involving the application of those techniques as well as on toxicity of cryoprotectants in freshwater prawn embryos are scarce. Thus, this study aims to test the toxicity of methylic alcohol (MET), dimethyl sulfoxide (DMSO) and ethylene glycol (EG) on Macrobrachium amazonicum embryos. For the present experiment, pools of embryos were taken from 15 M. amazonicum females and were divided into three groups and tested in duplicate at concentrations of 10, 5, 3; 1, 0.5 or 0.1%. Toxicity tests were conducted for 24 h in Falcon® pipes to obtain the lethal concentration for 50% of the larvae (LC50). After the set period for testing, random samples of embryos were removed for morphological analysis under stereoscopic microscopes. Results were analysed using analysis of variance (ANOVA) and Tukey's test at a 5% significance level and Trimmed Spearman-Karber Analysis to determine LC50-24 h. DMSO toxicity tests revealed that 5% and 10% concentrations showed the highest toxicity and differed from the control (P ≤ 0.05), 24h-LC50 was 437.4 ± 14.4 µL. MET was less toxic among the tested cryoprotectants and concentrations did not allow the determination of its LC50-24h. For tests with EG, concentrations of 3, 5 or 10% solutions resulted in a 100% mortality to tested embryos; EG was the tested cryoprotectant with the highest toxicity, with an LC50-24h average of 81.91 ± 35.3 µl.


Subject(s)
Cryopreservation/methods , Cryoprotective Agents/toxicity , Palaemonidae/drug effects , Palaemonidae/embryology , Animals , Dimethyl Sulfoxide/toxicity , Dose-Response Relationship, Drug , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/physiology , Ethylene Glycol/toxicity , Female , Fresh Water , Larva/drug effects , Methanol/toxicity , Toxicity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...