Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 14(3): 594-604, 2021 05.
Article in English | MEDLINE | ID: mdl-33542495

ABSTRACT

Human bronchial epithelial (HBE) cells play an essential role during bacterial infections of the airways by sensing pathogens and orchestrating protective immune responses. We here sought to determine which metabolic pathways are utilized by HBE cells to mount innate immune responses upon exposure to a relevant bacterial agonist. Stimulation of HBE cells by the bacterial component flagellin triggered activation of the mTOR pathway resulting in an increased glycolytic flux that sustained the secretory activity of immune mediators by HBE cells. The mTOR inhibitor rapamycin impeded glycolysis and limited flagellin-induced secretion of immune mediators. The role of the mTOR pathway was recapitulated in vivo in a mouse model of flagellin-triggered lung innate immune responses. These data demonstrate that metabolic reprogramming via the mTOR pathway modulates activation of the respiratory epithelium, identifying mTOR as a potential therapeutic target to modulate mucosal immunity in the context of bacterial infections.


Subject(s)
Bronchi/pathology , Epithelial Cells/immunology , Klebsiella Infections/immunology , Klebsiella pneumoniae/physiology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Cells, Cultured , Cellular Reprogramming , Disease Models, Animal , Female , Flagellin/metabolism , Glycolysis , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...