Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 11: 601876, 2020.
Article in English | MEDLINE | ID: mdl-33329747

ABSTRACT

Glycine max NAC81 (GmNAC81) is a downstream effector of the DCD/NRP-mediated cell death signaling, which interacts with GmNAC30 to fully induce the caspase 1-like vacuolar processing enzyme (VPE) expression, the executioner of the cell death program. GmNAC81 has been previously shown to positively modulate leaf senescence via the NRP/GmNAC81/VPE signaling module. Here, we examined the transcriptome induced by GmNAC81 overexpression and leaf senescence and showed that GmNAC81 further modulates leaf senescence by regulating an extensive repertoire of functionally characterized senescence-associated genes (SAGs). Because the NRP/GmNAC81/VPE signaling circuit also relays stress-induced cell death signals, we examined the effect of GmNAC81 overexpression in drought responses. Enhanced GmNAC81 expression in the transgenic lines increased sensitivity to water deprivation. Under progressive drought, the GmNAC81-overexpressing lines displayed severe leaf wilting, a larger and faster decline in leaf Ψw, relative water content (RWC), photosynthesis rate, stomatal conductance, and transpiration rate, in addition to higher Ci/Ca and lower Fm/Fv ratios compared to the BR16 control line. Collectively, these results indicate that the photosynthetic activity and apparatus were more affected by drought in the transgenic lines. Consistent with hypersensitivity to drought, chlorophyll loss, and lipid peroxidation were higher in the GmNAC81-overexpressing lines than in BR16 under dehydration. In addition to inducing VPE expression, GmNAC81 overexpression uncovered the regulation of typical drought-responsive genes. In particular, key regulators and effectors of ABA signaling were suppressed by GmNAC81 overexpression. These results suggest that GmNAC81 may negatively control drought tolerance not only via VPE activation but also via suppression of ABA signaling.

2.
J Econ Entomol ; 111(1): 218-226, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29329399

ABSTRACT

In this study, we constructed crop life tables for Bacillus thuringiensis Berliner (Bt) Cry1Ab and non-Bt corn hybrids, in which yield-loss factors and abundance of predaceous arthropods were recorded during 2 yr at two locations. Corn kernel/grain was the yield component that had the heaviest losses and that determined the overall yield loss in the corn hybrids across years and locations. Yield losses in both corn hybrids were primarily caused by kernel-destroying insects. Helicoverpa zea (Boddie) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) were the key loss factors at one location, while at the other, the key loss factor was the silk fly larvae, Euxesta spp. (Diptera: Ulidiidae). Although the realized yield of corn grains was not different (P > 0.05) between Cry1Ab and non-Bt corn hybrids, the Bt corn hybrid reduced (P < 0.05) the damage by H. zea and S. frugiperda in three of the four field trials, particularly at the location where Lepidoptera were the key loss factors. As expected, no reduction in the abundance of predaceous arthropods was observed in Cry1Ab corn fields. Various species of natural enemies were recorded, particularly the earwig Doru luteipes (Scudder) (Dermaptera: Forficulidae), which was the most abundant and frequent predaceous insect. These results indicate that integration of pest management practices should be pursued to effectively minimize losses by kernel-destroying insects during corn reproductive stages when growing non-Bt or certain low-dose Bt corn cultivars for fall armyworm and corn earworm, such as those producing Cry1Ab or other Cry toxins.


Subject(s)
Bacterial Proteins/pharmacology , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Herbivory/drug effects , Insecticides/pharmacology , Moths/drug effects , Predatory Behavior , Zea mays/growth & development , Animals , Arthropods , Bacillus thuringiensis Toxins , Bacterial Proteins/adverse effects , Brazil , Diptera/drug effects , Diptera/growth & development , Endotoxins/adverse effects , Hemolysin Proteins/adverse effects , Insecticides/adverse effects , Larva/drug effects , Life Tables , Moths/growth & development , Pest Control, Biological , Plants, Genetically Modified/growth & development
3.
Front Plant Sci ; 9: 1864, 2018.
Article in English | MEDLINE | ID: mdl-30619426

ABSTRACT

The NAC (NAM, ATAF, and CUC) genes encode transcription factors involved with the control of plant morph-physiology and stress responses. The release of the last soybean (Glycine max) genome assembly (Wm82.a2.v1) raised the possibility that new NAC genes would be present in the soybean genome. Here, we interrogated the last version of the soybean genome against a conserved NAC domain structure. Our analysis identified 32 putative novel NAC genes, updating the superfamily to 180 gene members. We also organized the genes in 15 phylogenetic subfamilies, which showed a perfect correlation among sequence conservation, expression profile, and function of orthologous Arabidopsis thaliana genes and NAC soybean genes. To validate our in silico analyses, we monitored the stress-mediated gene expression profiles of eight new NAC-genes by qRT-PCR and monitored the GmNAC senescence-associated genes by RNA-seq. Among ER stress, osmotic stress and salicylic acid treatment, all the novel tested GmNAC genes responded to at least one type of stress, displaying a complex expression profile under different kinetics and extension of the response. Furthermore, we showed that 40% of the GmNACs were differentially regulated by natural leaf senescence, including eight (8) newly identified GmNACs. The developmental and stress-responsive expression profiles of the novel NAC genes fitted perfectly with their phylogenetic subfamily. Finally, we examined two uncharacterized senescence-associated proteins, GmNAC065 and GmNAC085, and a novel, previously unidentified, NAC protein, GmNAC177, and showed that they are nuclear localized, and except for GmNAC065, they display transactivation activity in yeast. Consistent with a role in leaf senescence, transient expression of GmNAC065 and GmNAC085 induces the appearance of hallmarks of leaf senescence, including chlorophyll loss, leaf yellowing, lipid peroxidation and accumulation of H2O2. GmNAC177 was clustered to an uncharacterized subfamily but in close proximity to the TIP subfamily. Accordingly, it was rapidly induced by ER stress and by salicylic acid under late kinetic response and promoted cell death in planta. Collectively, our data further substantiated the notion that the GmNAC genes display functional and expression profiles consistent with their phylogenetic relatedness and established a complete framework of the soybean NAC superfamily as a foundation for future analyses.

SELECTION OF CITATIONS
SEARCH DETAIL
...