Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 12: 799668, 2022.
Article in English | MEDLINE | ID: mdl-35252026

ABSTRACT

P21 is an immunomodulatory protein expressed throughout the life cycle of Trypanosoma cruzi, the etiologic agent of Chagas disease. In vitro and in vivo studies have shown that P21 plays an important role in the invasion of mammalian host cells and establishment of infection in a murine model. P21 functions as a signal transducer, triggering intracellular cascades in host cells and resulting in the remodeling of the actin cytoskeleton and parasite internalization. Furthermore, in vivo studies have shown that P21 inhibits angiogenesis, induces inflammation and fibrosis, and regulates intracellular amastigote replication. In this study, we used the CRISPR/Cas9 system for P21 gene knockout and investigated whether the ablation of P21 results in changes in the phenotypes associated with this protein. Ablation of P21 gene resulted in a lower growth rate of epimastigotes and delayed cell cycle progression, accompanied by accumulation of parasites in G1 phase. However, P21 knockout epimastigotes were viable and able to differentiate into metacyclic trypomastigotes, which are infective to mammalian cells. In comparison with wild-type parasites, P21 knockout cells showed a reduced cell invasion rate, demonstrating the role of this protein in host cell invasion. However, there was a higher number of intracellular amastigotes per cell, suggesting that P21 is a negative regulator of amastigote proliferation in mammalian cells. Here, for the first time, we demonstrated the direct correlation between P21 and the replication of intracellular amastigotes, which underlies the chronicity of T. cruzi infection.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Actin Cytoskeleton/physiology , Animals , Chagas Disease/parasitology , Gene Knockout Techniques , Life Cycle Stages/physiology , Mammals/genetics , Mice , Trypanosoma cruzi/physiology
2.
J Eukaryot Microbiol ; 69(3): e12903, 2022 05.
Article in English | MEDLINE | ID: mdl-35279903

ABSTRACT

Cellular invasion by Trypanosoma cruzi metacyclic trypomastigotes (MTs) or tissue culture trypomastigotes (TCTs) is a complex process involving host-parasite cellular and molecular interactions. Particularly, the involvement of host cell actin cytoskeleton during trypomastigote invasion is poorly investigated, and still, the results are controversial. In the present work, we compare side by side both trypomastigote forms and employ state-of-the-art live-cell imaging showing for the first time the dynamic mobilization of host cell actin cytoskeleton to MT and TCT invasion sites. Moreover, cytochalasin D, latrunculin B, and jasplakinolide-pretreated cells inhibited MT and TCT invasion. Furthermore, our results demonstrated that TCT invasion decreased in RhoA, Rac1, and Cdc-42 GTPase-depleted cells, whereas MT invasion decreased only in Cdc42-and RhoA-depleted cells. Interestingly, depletion of the three studied GTPases induced a scattered lysosomal distribution throughout the cytosol. These observations indicate that GTPase depletion is sufficient to impair parasite invasion despite the importance of lysosome spread in trypomastigote invasion. Together, our results demonstrate that the host cell actin cytoskeleton plays a direct role during TCT and MT invasion.


Subject(s)
Trypanosoma cruzi , Actin Cytoskeleton/metabolism , Lysosomes/metabolism , Lysosomes/parasitology , Trypanosoma cruzi/metabolism
3.
Microbes Infect ; 23(8): 104837, 2021.
Article in English | MEDLINE | ID: mdl-33957277

ABSTRACT

Cell invasion by Trypanosoma cruzi extracellular amastigotes (EAs) relies significantly upon the host cell actin cytoskeleton. In past decades EAs have been established as a reliable model for phagocytosis inducer in non-phagocytic cells. Our current hypothesis is that EAs engage a phagocytosis-like mechanism in non-professional phagocytic cells; however, the molecular mechanisms in professional phagocytes still remain unexplored. In this work, we evaluated the involvement of Rac1 and Cdc42 in the actin-dependent internalization of EAs in RAW 264.7 macrophages. Kinetic assays showed similar internalization of EAs in unstimulated RAW and non-phagocytic HeLa cells but increased in LPS/IFN-γ stimulated RAW cells. However, depletion of Rac1, Cdc42 or RhoA inhibited EA internalization similarly in both unstimulated and stimulated RAW cells. Overexpression of active, but not the dominant-negative, construct of Rac1 increased EA internalization. Remarkably, for Cdc42, both the active and the inactive mutants decreased EA internalization when compared to wild type groups. Despite that, both Rac1 and Cdc42 activation mutants were similarly recruited to and colocalized with actin at the EA-macrophage contact sites when compared to their native isoforms. Altogether, these results corroborate that EAs engage phagocytic processes to invade both professional and non-professional phagocytic cells providing evidences of converging actin mediated mechanisms induced by intracellular pathogens in both cell types.


Subject(s)
Trypanosoma cruzi , Actins/metabolism , HeLa Cells , Humans , Macrophages/metabolism , Phagocytosis/physiology , Trypanosoma cruzi/physiology , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
4.
J Nat Med ; 74(3): 606-611, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32277328

ABSTRACT

Six limonoids [kotschyienone A and B (1, 2), 7-deacetylgedunin (3), 7-deacetyl-7-oxogedunin (4), andirobin (5) and methyl angolensate (6)] were investigated for their trypanocidal and leishmanicidal activities using bloodstream forms of Trypanosoma brucei and promastigotes of Leishmania major. Whereas all compounds showed anti-trypanosomal activity, only compounds 1-4 displayed anti-leishmanial activity. The 50% growth inhibition (GI50) values for the trypanocidal and leishmanicidal activity of the compounds ranged between 2.5 and 14.9 µM. Kotschyienone A (1) was found to be the most active compound with a minimal inhibition concentration (MIC) value of 10 µM and GI50 values between 2.5 and 2.9 µM. Only compounds 1 and 3 showed moderate cytotoxicity against HL-60 cells with MIC and GI50 values of 100 µM and 31.5-46.2 µM, respectively. Compound 1 was also found to show activity against intracellular amastigotes of L. major with a GI50 value of 1.5 µM. The results suggest that limonoids have potential as drug candidates for the development of new treatments against trypanosomiasis and leishmaniasis.


Subject(s)
Leishmania major/drug effects , Leishmaniasis/drug therapy , Limonins/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis/drug therapy , Animals , HL-60 Cells , Humans , Microbial Sensitivity Tests
5.
Microbes Infect ; 21(10): 485-489, 2019 12.
Article in English | MEDLINE | ID: mdl-31247328

ABSTRACT

Cell invasion by Trypanosoma cruzi extracellular amastigotes involves different signaling pathways to induce phagocytosis-like mechanisms. Previous works indicated that PI3K/Akt, Src and Erk might be involved in EA invasion; however, participation of these molecules in this process remains elusive. Here, we observed that EA activated Akt, Erk but not Src. Interference of EA invasion with specific inhibitors corroborated this observation. Our results show that EA is capable of selectively triggering complex signaling pathways. Activation of PI3K/Akt and Erk, kinases related to actin cytoskeleton rearrangement and phagocytosis, reinforces the idea that T. cruzi EA subverts the phagocytic machinery during invasion.


Subject(s)
Chagas Disease/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Trypanosoma cruzi/physiology , Chagas Disease/parasitology , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , HeLa Cells , Humans , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects
6.
Cell Microbiol ; 21(5): e13003, 2019 05.
Article in English | MEDLINE | ID: mdl-30609224

ABSTRACT

Host cell invasion by Trypanosoma cruzi metacyclic trypomastigote (MT) is mediated by MT-specific surface molecule gp82, which binds to a still unidentified receptor, inducing lysosome spreading and exocytosis required for the parasitophorous vacuole formation. We examined the involvement of the major lysosome membrane-associated LAMP proteins in MT invasion. First, human epithelial HeLa cells were incubated with MT in the presence of antibody to LAMP-1 or LAMP-2. Antibody to LAMP-2, but not to LAMP-1, significantly reduced MT invasion. Next, HeLa cells depleted in LAMP-1 or LAMP-2 were generated. Cells deficient in LAMP-2, but not in LAMP-1, were significantly more resistant to MT invasion than wild-type controls. The possibility that LAMP-2 might be the receptor for gp82 was examined by co-immunoprecipitation assays. Protein A/G magnetic beads cross-linked with antibody directed to LAMP-1 or LAMP-2 were incubated with HeLa cell and MT detergent extracts. Gp82 bound to LAMP-2 but not to LAMP-1. Binding of the recombinant gp82 protein to wild-type and LAMP-1-deficient cells, which was dose dependent and saturable, had a similar profile and was much higher as compared with LAMP-2-depleted cells. These data indicate that MT invasion is accomplished through recognition of gp82 by its receptor LAMP-2.


Subject(s)
Cell Membrane/metabolism , Epithelial Cells/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/pathogenicity , Variant Surface Glycoproteins, Trypanosoma/metabolism , Cell Membrane/genetics , Epithelial Cells/parasitology , Exocytosis/genetics , HeLa Cells , Host-Pathogen Interactions/genetics , Humans , Immunoprecipitation , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Protein Binding , Protozoan Proteins/genetics , Recombinant Proteins/metabolism , Trypanosoma cruzi/metabolism , Variant Surface Glycoproteins, Trypanosoma/genetics
7.
Sci Rep ; 7(1): 15606, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29142235

ABSTRACT

Sepsis is a life-threatening disorder characterized by organ dysfunction and a major cause of mortality worldwide. The major challenge in studying sepsis is its diversity in such factors as age, source of infection and etiology. Recently, genomic and proteomic approaches have improved our understanding of its complex pathogenesis. In the present study, we use quantitative proteomics to evaluate the host proteome response in septic patients secondary to community-acquired pneumonia (CAP). Samples obtained at admission and after 7 days of follow-up were analyzed according to the outcomes of septic patients. The patients' proteome profiles were compared with age- and gender-matched healthy volunteers. Bioinformatic analyses of differentially expressed proteins showed alteration in the cytoskeleton, cellular assembly, movement, lipid metabolism and immune responses in septic patients. Actin and gelsolin changes were assessed in mononuclear cells using immunofluorescence, and a higher expression of gelsolin and depletion of actin were observed in survivor patients. Regarding lipid metabolism, changes in cholesterol, HDL and apolipoproteins were confirmed using enzymatic colorimetric methods in plasma. Transcriptomic studies revealed a massive change in gene expression in sepsis. Our proteomic results stressed important changes in cellular structure and metabolism, which are possible targets for future interventions of sepsis.


Subject(s)
Community-Acquired Infections/genetics , Lipid Metabolism/genetics , Pneumonia/genetics , Sepsis/genetics , Actins/genetics , Aged , Community-Acquired Infections/blood , Community-Acquired Infections/complications , Community-Acquired Infections/pathology , Female , Gelsolin/genetics , Gene Expression Regulation/genetics , Genome, Human/genetics , Genomics , Host-Pathogen Interactions/genetics , Humans , Lipids/blood , Male , Middle Aged , Pneumonia/blood , Pneumonia/complications , Pneumonia/pathology , Proteome/genetics , Sepsis/blood , Sepsis/complications , Sepsis/pathology , Transcriptome/genetics
8.
Sci Rep ; 6: 24610, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27113535

ABSTRACT

Mevalonate kinase (MVK) is an essential enzyme acting in early steps of sterol isoprenoids biosynthesis, such as cholesterol in humans or ergosterol in trypanosomatids. MVK is conserved from bacteria to mammals, and localizes to glycosomes in trypanosomatids. During the course of T. cruzi MVK characterization, we found that, in addition to glycosomes, this enzyme may be secreted and modulate cell invasion. To evaluate the role of TcMVK in parasite-host cell interactions, TcMVK recombinant protein was produced and anti-TcMVK antibodies were raised in mice. TcMVK protein was detected in the supernatant of cultures of metacyclic trypomastigotes (MTs) and extracellular amastigotes (EAs) by Western blot analysis, confirming its secretion into extracellular medium. Recombinant TcMVK bound in a non-saturable dose-dependent manner to HeLa cells and positively modulated internalization of T. cruzi EAs but inhibited invasion by MTs. In HeLa cells, TcMVK induced phosphorylation of MAPK pathway components and proteins related to actin cytoskeleton modifications. We hypothesized that TcMVK is a bifunctional enzyme that in addition to playing a classical role in isoprenoid synthesis in glycosomes, it is secreted and may modulate host cell signaling required for T. cruzi invasion.


Subject(s)
Host-Parasite Interactions/physiology , Microbodies/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction , Trypanosoma cruzi/enzymology , Actin Cytoskeleton , Amino Acid Sequence , Animals , Antibodies, Helminth/immunology , Dimerization , HeLa Cells , Humans , Life Cycle Stages , Mice , Microscopy, Fluorescence , Mitogen-Activated Protein Kinases/metabolism , Molecular Dynamics Simulation , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/immunology , Protein Structure, Quaternary , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Sequence Alignment , Trypanosoma cruzi/physiology
9.
Infect Immun ; 84(5): 1603-1614, 2016 05.
Article in English | MEDLINE | ID: mdl-26975994

ABSTRACT

The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol.


Subject(s)
Cell Differentiation , Leishmania/physiology , Macrophages/parasitology , Trypanosoma cruzi/physiology , Vacuoles/parasitology , Animals , Coinfection/parasitology , Leishmania/growth & development , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Fluorescence , RAW 264.7 Cells , Trypanosoma cruzi/growth & development
10.
PLoS Negl Trop Dis ; 9(11): e0004216, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26565791

ABSTRACT

BACKGROUND: The surface coat of Trypanosoma cruzi is predominantly composed of glycosylphosphatidylinositol-anchored proteins, which have been extensively characterized. However, very little is known about less abundant surface proteins and their role in host-parasite interactions. METHODOLOGY/ PRINCIPAL FINDINGS: Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), which are conserved among different T. cruzi lineages and have orthologs in other Trypanosoma species. TcSMP genes are densely clustered within the genome, suggesting that they could have originated by tandem gene duplication. Several lines of evidence indicate that TcSMP is a membrane-spanning protein located at the cellular surface and is released into the extracellular milieu. TcSMP exhibited the key elements typical of surface proteins (N-terminal signal peptide or signal anchor) and a C-terminal hydrophobic sequence predicted to be a trans-membrane domain. Immunofluorescence of live parasites showed that anti-TcSMP antibodies clearly labeled the surface of all T. cruzi developmental forms. TcSMP peptides previously found in a membrane-enriched fraction were identified by proteomic analysis in membrane vesicles as well as in soluble forms in the T. cruzi secretome. TcSMP proteins were also located intracellularly likely associated with membrane-bound structures. We demonstrated that TcSMP proteins were capable of inhibiting metacyclic trypomastigote entry into host cells. TcSMP bound to mammalian cells and triggered Ca2+ signaling and lysosome exocytosis, events that are required for parasitophorous vacuole biogenesis. The effects of TcSMP were of lower magnitude compared to gp82, the major adhesion protein of metacyclic trypomastigotes, suggesting that TcSMP may play an auxiliary role in host cell invasion. CONCLUSION/SIGNIFICANCE: We hypothesized that the productive interaction of T. cruzi with host cells that effectively results in internalization may depend on diverse adhesion molecules. In the metacyclic forms, the signaling induced by TcSMP may be additive to that triggered by the major surface molecule gp82, further increasing the host cell responses required for infection.


Subject(s)
Cell Adhesion , Endocytosis , Membrane Proteins/genetics , Trypanosoma cruzi/genetics , Animals , Calcium Signaling , Cell Line , Conserved Sequence , Humans , Membrane Proteins/analysis , Microscopy, Fluorescence , Multigene Family , Protein Binding , Protein Structure, Tertiary , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/physiology
11.
Cell Microbiol ; 17(12): 1797-810, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26096820

ABSTRACT

Trypanosoma cruzi extracellular amastigotes (EAs) display unique mechanisms for cell invasion that are highly dependent on host actin filaments. Protein kinase D1 (PKD1) phosphorylates and modulates the activity of cortactin, a key regulator of actin dynamics. We evaluated the role of host cortactin and PKD1 in actin filament dynamics during HeLa cell invasion by EAs. Host cortactin, PKD1 and actin are recruited by EAs based on experiments in fixed and live cells by time lapse confocal microscopy. EAs trigger PKD1 and extracellular signal-regulated kinase 1/2 activation, but not Src family kinases, and selectively phosphorylate cortactin. Heat-killed EAs and non-infective epimastigotes both triggered distinct host responses and did not recruit the molecules studied herein. EA invasion was influenced by depletion or overexpression of host cortactin and PKD1, respectively, suggesting the involvement of both proteins in this event. Collectively, these results show new host cell mechanisms subverted during EA internalization into non-phagocytic cells.


Subject(s)
Actins/metabolism , Cortactin/metabolism , Endocytosis , Host-Pathogen Interactions , Protein Kinase C/metabolism , Signal Transduction , Trypanosoma cruzi/physiology , Epithelial Cells/parasitology , Epithelial Cells/physiology , HeLa Cells , Humans , Microscopy, Confocal , Sequence Analysis, DNA , Time-Lapse Imaging
12.
Infect Genet Evol ; 25: 157-65, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24727645

ABSTRACT

Chagas disease is caused by the protozoan Trypanosoma cruzi which affects 10 million people worldwide. Very few kinases have been characterized in this parasite, including the phosphatidylinositol kinases (PIKs) that are at the heart of one of the major pathways of intracellular signal transduction. Recently, we have classified the PIK family in T. cruzi using five different models based on the presence of PIK conserved domains. In this study, we have mapped PIK genes to the chromosomes of two different T. cruzi lineages (G and CL Brener) and determined the cellular localization of two PIK members. The kinases have crucial roles in metabolism and are assumed to be conserved throughout evolution. For this reason, they should display a conserved localization within the same eukaryotic species. In spite of this, there is an extensive polymorphism regarding PIK localization at both genomic and cellular levels, among different T. cruzi isolates and between T. cruzi and Trypanosomabrucei, respectively. We showed in this study that the cellular localization of two PIK-related proteins (TOR1 and 2) in the T. cruzi lineage is distinct from that previously observed in T. brucei. In addition, we identified a new PIK gene with peculiar feature, that is, it codes for a FYVE domain at N-terminal position. FYVE-PIK genes are phylogenetically distant from the groups containing exclusively the FYVE or PIK domain. The FYVE-PIK architecture is only present in trypanosomatids and in virus such as Acanthamoeba mimivirus, suggesting a horizontal acquisition. Our Bayesian phylogenetic inference supports this hypothesis. The exact functions of this FYVE-PIK gene are unknown, but the presence of FYVE domain suggests a role in membranous compartments, such as endosome. Taken together, the data presented here strengthen the possibility that trypanosomatids are characterized by extensive genomic plasticity that may be considered in designing drugs and vaccines for prevention of Chagas disease.


Subject(s)
Phosphatidylinositol 3-Kinases/genetics , Protozoan Proteins/genetics , Trypanosoma cruzi/classification , Trypanosoma cruzi/enzymology , Bayes Theorem , Chagas Disease/epidemiology , Evolution, Molecular , Gene Transfer, Horizontal , Genome, Protozoan , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phylogeny , Protozoan Proteins/metabolism , Trypanosoma cruzi/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...