Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1218(12): 1663-7, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21316685

ABSTRACT

The estimation of physicochemical parameters such as distillation points and relative densities still plays an important role in the quality control of gasoline and similar fuels. Their measurements according to standard ASTM procedures demands specific equipments and are time and work consuming. An alternative method to predict distillation points and relativity density by multivariate analysis of comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) data is presented here. Gasoline samples, previously tested according to standard methods, were used to build regression models, which were evaluated by external validation. The models for distillation points were built using variable selection methods, while the model for relativity density was built using the whole chromatograms. The root mean square prediction differences (RMSPD) obtained were 0.85%, 0.48%, 1.07% and 1.71% for 10, 50 and 90% v/v of distillation and for the final point of distillation, respectively. For relative density, the RMSPD was 0.24%. These results suggest that GC×GC-FID combined with multivariate analysis can be used to predict these physicochemical properties of gasoline.


Subject(s)
Chromatography, Gas/methods , Gasoline/analysis , Chemical Phenomena , Distillation , Multivariate Analysis , Reproducibility of Results
2.
J Chromatogr A ; 1201(2): 176-82, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18571187

ABSTRACT

A method to detect potential adulteration of commercial gasoline (Type C gasoline, available in Brazil and containing 25% (v/v) ethanol) is presented here. Comprehensive two-dimensional gas chromatography with flame ionization detection (GCxGC-FID) data and multivariate calibration (multi-way partial least squares regression, N-PLS) were combined to obtain regression models correlating the concentration of gasoline on samples from chromatographic data. Blends of gasoline and white spirit, kerosene and paint thinner (adopted as model adulterants) were used for calibration; the regression models were evaluated using samples of Type C gasoline spiked with these solvents, as well as with ethanol. The method was also checked with real samples collected from gas stations and analyzed using the official method. The root mean square error of prediction (RMSEP) for gasoline concentrations on test samples calculated using the regression model ranged from 3.3% (v/v) to 8.2% (v/v), depending on the composition of the blends; in addition, the results for the real samples agree with the official method. These observations suggest that GCxGC-FID and N-PLS can be an alternative for routine monitoring of fuel adulteration, as well as to solve several other similar analytical problems where mixtures should be detected and quantified as single species in complex samples.


Subject(s)
Chromatography, Gas/methods , Ethanol/analysis , Gasoline/analysis , Kerosene/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...