Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Extremophiles ; 27(2): 16, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410158

ABSTRACT

The postharvest disease popularly known as gray mold is considered one of the most limiting factors strawberry fruit production. The most effective way to control this disease is still the use of chemical fungicides. However, other alternative sources of control are being explored. Among these, psychrophilic yeasts adapted to extreme conditions, such as those found in the Antarctic region, may have great potential for use as biocontrol agents. Thus, the present study aimed to select psychrotolerant yeasts obtained from Antarctic region and to evaluate their potential for biocontrol under gray mold, caused by Botrytis cinerea in strawberries stored at low temperature. For this, 20 potential antagonist yeasts were evaluated in vitro (thermotolerance and enzymatic) assays. Debaryomyces hansenii, Rhodotorula mucilaginosa and Dioszegia hungarica were selected for growing in strawberry juice. However, only D. hansenii was selected for in vivo studies and showed a reduction in the incidence of gray mold by 82% for the tests performed on injury and 86% for the tests on non-injured fruits treated by immersion bath. Thus, demonstrating that the selection of this cold-adapted Antarctic yeast can be a promising strategy as a biocontrol agent used to curb the development of gray mold in strawberry fruits.


Subject(s)
Fragaria , Fungicides, Industrial , Antarctic Regions , Fungi , Yeasts , Fungicides, Industrial/pharmacology
2.
Extremophiles ; 23(1): 151-159, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30499002

ABSTRACT

The interest in the diversity of yeasts in the Antarctic environment has increased in recent years, mainly because Antarctic microbiology is a recent science, and little is known about the biodiversity and genetic resources of the microorganisms that inhabit this ecosystem. This study aimed to determine the diversity of epiphytic yeasts in samples of Deschampsia antarctica, Colobanthus quitensis, and bryophytes, as well yeasts present in biofilms collected from Antarctic meltwater. Samples were collected in the summer of 2014 and 2015 during expeditions organized by the Brazilian Antarctic Program. A total of 310 yeasts were isolated, and 34 species were identified by sequencing the D1/D2 domains of the rDNA region belonging to 18 genera. The species Vishniacozyma victoriae and Mrakia gelida were the most abundant. Dioszegia antarctica and Leucosporidium creatinivorum were found only in plant substrates. Most psychrophilic yeasts were isolated from biofilms, including Glaciozyma antarctica, Glaciozyma martinii, Mrakia gelida, Mrakia frigida, Mrakia robertii, Phenoliferia glacialis, and Phenoliferia psychrophenolica, suggesting that the substrates examined in this study represented an interesting habitat for the isolation and characterization of epiphytic and non-epiphytic yeasts that colonize the Antarctic region.


Subject(s)
Microbiota , Phylogeny , Yeasts/classification , Antarctic Regions , Biofilms , Bryophyta/microbiology , Magnoliopsida/microbiology , Water Microbiology , Yeasts/genetics , Yeasts/isolation & purification , Yeasts/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL