Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33823274

ABSTRACT

Estuaries are the final destination of many pollutants derived from anthropogenic activity. Therefore, it is difficult to find this kind of ecosystem in a pristine condition. In this context, biomonitoring studies that characterize the organism's conditions against the environment' s natural variation are essential for future impact analysis due to anthropic activity. The present study aims to characterize the natural modulation of biochemical biomarkers in oysters Crassostrea gasar. The research was conducted in Japerica Bay, an estuary region located in the Eastern Amazon (Pará, Brazil), which has remained in pristine condition for many years. The samplings were carried out throughout one year during the rainy-dry transition period (June/2013), dry period (September/2013), dry-rainy transition period (November / 2013), and rainy period (February / 2014) in the lower and upper estuary. The activity of glutathione-S-transferase (GST) and total antioxidant capacity (ACAP) were evaluated as biomarkers of exposure and lipid peroxidation (LPO) as an effect biomarker. In gills, GST decreased during the rainy season in both sites and increased during the salinity peak (dry-rainy transition period) for the upper estuary's organisms. In this organ, the lowest levels of LPO occurred during the dry season for both points. There was an induction of ACAP in muscle during the rainy-dry transition period compared to the dry and dry-rainy transition periods for the lower estuary's organisms, and there were no differences for GST suggesting low tissue sensitivity. There was an increase in LPO during the rainy season compared to the rainy-dry transition period for the lower estuaries animals. Biomarkers in gills suggest a metabolic challenge to the rainy season and stability during the dry season. The species shows high viability of use in biomonitoring programs. However, these seasonality-induced alterations in biomarkers responses must be taken into account to interpret the results.


Subject(s)
Environmental Monitoring/methods , Oxidative Stress , Seasons , Water Pollutants, Chemical/metabolism , Animals , Anthropogenic Effects , Antioxidants , Biomarkers/metabolism , Brazil , Climate , Crassostrea/drug effects , Ecosystem , Estuaries , Geography , Gills/physiology , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Ostreidae , Salinity , Water
2.
Mar Pollut Bull ; 165: 112155, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33610107

ABSTRACT

Spatial distribution of Butyltins (BTs) in surface sediments and gastropod tissues were quantified, with samples taken from an estuarine system of the Eastern Amazon, Brazil. The imposex incidence was also assessed using Thaisella coronata (Gastropoda, Mollusca). The sediment sampling was carried out at 19 sites and T. coronata in 6 of those. The highest BTs levels were detected in sediments of a Marine Extractive Reserve (27.1 ng Sn g-1) and in an urban area (19.8 ng Sn g-1). In T. coronata tissues, BTs levels ranged from <5 to 142 ng Sn g-1. Imposex incidence ranged from 0% to 100% and VDSII (penile papillae) was registered in gastropods from 5 out of 6 sampled sites. The results suggest that BTs concentrations are related to sampled area use, but also to the local hydrodynamics, highlighting the importance of an effective control in the use of TBT-based antifouling paints in the Eastern Amazon.


Subject(s)
Gastropoda , Organotin Compounds , Trialkyltin Compounds , Water Pollutants, Chemical , Animals , Brazil , Environmental Monitoring , Male , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...