Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Chem Neuroanat ; 129: 102241, 2023 04.
Article in English | MEDLINE | ID: mdl-36738851

ABSTRACT

The amylin and the melanin-concentrating hormone [MCH] are two peptides related to energetic homeostasis. During lactation, it is possible to locate neurons expressing these peptides in the preoptic area of rat dams. In addition, it was demonstrated that the number of MCH neurons in this region is modulated by litter size. Taken together, the aims of this work were (1) to verify the time course of amylin immunoreactivity during lactation; (2) to verify whether litter size modulates the number of amylin-ir neurons (3) to verify whether there is colocalization between the amylin-ir and MCH-ir neurons. Our results show that (1) there is an increase in the number of amylin-ir neurons during lactation, which reaches a peak at postpartum day 19 and drastically reduces after weaning; (2) there is no correlation between litter size and the number of amylin-ir neurons; and (3) there is minimal overlap between amylin-ir and MCH-ir neurons.


Subject(s)
Hypothalamic Hormones , Preoptic Area , Female , Rats , Animals , Preoptic Area/metabolism , Islet Amyloid Polypeptide , Pituitary Hormones , Hypothalamic Hormones/metabolism , Melanins , Lactation , Neurons/metabolism
2.
Peptides ; 163: 170975, 2023 05.
Article in English | MEDLINE | ID: mdl-36791916

ABSTRACT

Melanin-concentrating hormone (MCH) is a peptide related to the reproductive function by interacting with the hypothalamus-pituitary-gonadal axis. In addition to the MCH central production, it is also found in the blood with a putative role as a neurohormone. Thereby, our focus is on steroid hormones' role in regulating centrally produced MCH in the incerto-hypothalamic area (IHy) and the peripheral MCH in the serum. For this, we investigated the effect of estradiol and/or progesterone injection on the number of MCH immunoreactive (MCH-ir) neurons at the IHy and serum levels. For further study of the role of progesterone, we analyzed the effect of blockade of progesterone receptors by its antagonist on MCH-ir neurons at the IHy and serum. To identify whether such regulation over MCH is established before sexual maturation, we assessed the effect of peripubertal removal of steroid hormones on MCH-ir neurons at the IHy and serum levels at adult age. Our results show that injecting estradiol in ovariectomized female rats reduces the number of MCH-ir neurons in the IHy, in addition to its serum levels. Blockade of progesterone receptors in intact females increases the number of MCH-ir neurons in the IHy and its serum concentration. The regulation of these hormones over the MCH peptidergic system is established before sexual maturation, once the peripubertal removal of the ovaries changes the serum levels of MCH and the number of MCH-ir neurons in the IHy of adult females. Such results support the inhibitory role of steroid hormones over the MCH system.


Subject(s)
Hypothalamic Hormones , Progesterone , Female , Rats , Animals , Estradiol , Receptors, Progesterone , Pituitary Hormones , Hypothalamus/metabolism , Hypothalamic Hormones/metabolism , Melanins
3.
J Chem Neuroanat ; 128: 102208, 2023 03.
Article in English | MEDLINE | ID: mdl-36476756

ABSTRACT

The hypothalamus plays a role in reproductive cycle control, and it is a site of action of steroid hormones. Throughout the production of melanin-concentrating hormone (MCH), the hypothalamus shows adaptive changes during lactation. Therefore, in this work, we aimed to test the effects of estrogen and progesterone manipulation on MCH-immunoreactive (ir) neurons in hypothalamic brain areas related to reproductive behavior and on the MCH serum concentration. Our results show that the removal of steroid hormones by ovariectomy increases the number of MCH-ir neurons in the medial preoptic area (MPOA) and incerto-hypothalamic area (IHy) but not in the anterior part of the paraventricular nucleus of the hypothalamus (PVHa). The MCH in the serum levels also increases. In accordance, the injection of estradiol alone or estradiol and progesterone decreased the number of MCH-ir neurons in the MPOA and IHy, as well as its serum levels. The MPOA and IHy are the brain areas targeted by the steroid hormone inhibitory effect of the MCH system during lactation. This effect is also reflected in the MCH serum levels.


Subject(s)
Hypothalamic Hormones , Reproductive Behavior , Female , Humans , Progesterone , Lactation , Pituitary Hormones , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Melanins , Estrogens , Neurons/metabolism , Estradiol
4.
Neurosci Lett ; 746: 135657, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33482312

ABSTRACT

During puberty, sexual hormones induce crucial changes in neural circuit organization, leading to significant sexual dimorphism in adult behaviours. The ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl) is the major neural site controlling the receptive component of female sexual behaviour, which is dependent on ovarian hormones. The inputs to the VMHvl, originating from the medial nucleus of the amygdala (MeA), transmit essential information to trigger such behaviour. In this study, we investigated the projection pattern of the MeA to the VMHvl in ovariectomized rats at early puberty. Six-week-old Sprague-Dawley rats were ovariectomized (OVX) and, upon reaching 90 days of age, were subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MeA. Projections from the MeA to the VMHvl and to other structures included in the neural circuit responsible for female sexual behaviour were analysed in the Control and OVX groups. The results of the semi-quantitative analysis showed that peripubertal ovariectomy reduced the density of intra-amygdalar fibres. The stereological estimates, however, failed to find changes in the organization of the terminal fields of nerve fibres from the MeA to the VMHvl in the adult. The present data show that ovariectomized rats during the peripubertal phase did not undergo significant changes in MeA fibres reaching the VMHvl; however, they suggest a possible effect of ovariectomy on MeA connectivity under amygdalar subnuclei.


Subject(s)
Corticomedial Nuclear Complex/metabolism , Nerve Net/metabolism , Ovariectomy/trends , Sexual Maturation/physiology , Ventromedial Hypothalamic Nucleus/metabolism , Age Factors , Animals , Corticomedial Nuclear Complex/diagnostic imaging , Female , Imaging, Three-Dimensional/trends , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism , Ovariectomy/adverse effects , Rats , Rats, Sprague-Dawley , Ventromedial Hypothalamic Nucleus/diagnostic imaging
5.
J Anat ; 238(2): 467-479, 2021 02.
Article in English | MEDLINE | ID: mdl-32914872

ABSTRACT

Puberty is an important phase of development when the neural circuit organization is transformed by sexual hormones, inducing sexual dimorphism in adult behavioural responses. The principal brain area responsible for the control of the receptive component of female sexual behaviour is the ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl), which is known for its dependency on ovarian hormones. Inputs to the VMHvl originating from the medial preoptic nucleus (MPN) are responsible for conveying essential information that will trigger such behaviour. Here, we investigated the pattern of the projection of the MPN to the VMHvl in rats ovariectomized at the onset of puberty. Sprague Dawley rats were ovariectomized (OVX) at puberty and then subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MPN once they reached 90 days of age. This study analysed the connectivity pattern established between the MPN and the VMH that is involved in the neuronal circuit responsible for female sexual behaviour in control and OVX rats. The data show the changes in the organization of the connections observed in the OVX adult rats that displayed a reduced axonal length for the MPN fibres reaching the VMHvl, suggesting that peripubertal ovarian hormones are relevant to the organization of MPN connections with structures involved in the promotion of female sexual behaviour.


Subject(s)
Gonadal Steroid Hormones/physiology , Preoptic Area/growth & development , Ventromedial Hypothalamic Nucleus/growth & development , Animals , Female , Nerve Fibers , Ovariectomy , Rats, Sprague-Dawley
6.
Article in English | MEDLINE | ID: mdl-32849267

ABSTRACT

Lactation is a complex physiological process, depending on orchestrated central and peripheral events, including substantial brain plasticity. Among these events is a novel expression of pro-melanin-concentrating hormone (Pmch) mRNA in the rodent hypothalamus, such as the ventral part of the medial preoptic area (vmMPOA). This expression reaches its highest levels around postpartum day 19 (PPD19), when dams transition from lactation to the weaning period. The appearance of this lactation-related Pmch expression occurs simultaneously with the presence of one of the Pmch products, melanin-concentrating hormone (MCH), in the serum. Given the relevance of the MPOA to maternal physiology and the contemporaneity between Pmch expression in this structure and the weaning period, we hypothesized that MCH has a role in the termination of lactation, acting as a mediator between central and peripheral changes. To test this, we investigated the presence of the MCH receptor 1 (MCHR1) and its gene expression in the mammary gland of female rats in different stages of the reproductive cycle. To that end, in situ hybridization, RT-PCR, RT-qPCR, nucleotide sequencing, immunohistochemistry, and Western blotting were employed. Although Mchr1 expression was detected in the epidermis and dermis of both diestrus and lactating rats, parenchymal expression was exclusively found in the functional mammary gland of lactating rats. The expression of Mchr1 mRNA oscillated through the lactation period and reached its maximum in PPD19 dams. Presence of MCHR1 was confirmed with immunohistochemistry with preferential location of MCHR1 immunoreactive cells in the alveolar secretory cells. As was the case for gene expression, the MCHR1 protein levels were significantly higher in PPD19 than in other groups. Our data demonstrate the presence of an anatomical basis for the participation of MCH peptidergic system on the control of lactation through the mammary gland, suggesting that MCH could modulate a prolactation action in early postpartum days and the opposite role at the end of the lactation.


Subject(s)
Lactation , Mammary Glands, Animal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Pituitary Hormone/genetics , Receptors, Pituitary Hormone/metabolism , Animals , Female , Immunohistochemistry , Male , Mammary Glands, Animal/growth & development , Rats , Rats, Long-Evans
7.
J Neurosci Res ; 98(10): 2045-2071, 2020 10.
Article in English | MEDLINE | ID: mdl-32530066

ABSTRACT

Melanin-concentrating hormone (MCH) is a ubiquitous vertebrate neuropeptide predominantly synthesized by neurons of the diencephalon that can act through two G protein-coupled receptors, called MCHR1 and MCHR2. The expression of Mchr1 has been investigated in both rats and mice, but its synthesis remains poorly described. After identifying an antibody that detects MCHR1 with high specificity, we employed immunohistochemistry to map the distribution of MCHR1 in the CNS of rats and mice. Multiple neurochemical markers were also employed to characterize some of the neuronal populations that synthesize MCHR1. Our results show that MCHR1 is abundantly found in a subcellular structure called the primary cilium, which has been associated, among other functions, with the detection of free neurochemical messengers present in the extracellular space. Ciliary MCHR1 was found in a wide range of areas, including the olfactory bulb, cortical mantle, striatum, hippocampal formation, amygdala, midline thalamic nuclei, periventricular hypothalamic nuclei, midbrain areas, and in the spinal cord. No differences were observed between male and female mice, and interspecies differences were found in the caudate-putamen nucleus and the subgranular zone. Ciliary MCHR1 was found in close association with several neurochemical markers, including tyrosine hydroxylase, calretinin, kisspeptin, estrogen receptor, oxytocin, vasopressin, and corticotropin-releasing factor. Given the role of neuronal primary cilia in sensing free neurochemical messengers in the extracellular fluid, the widespread distribution of ciliary MCHR1, and the diverse neurochemical populations who synthesize MCHR1, our data indicate that nonsynaptic communication plays a prominent role in the normal function of the MCH system.


Subject(s)
Brain/metabolism , Cilia/metabolism , Receptors, Somatostatin/biosynthesis , Sex Characteristics , Animals , Cilia/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Receptors, Somatostatin/genetics
9.
Cell ; 175(3): 665-678.e23, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30245012

ABSTRACT

The gut is now recognized as a major regulator of motivational and emotional states. However, the relevant gut-brain neuronal circuitry remains unknown. We show that optical activation of gut-innervating vagal sensory neurons recapitulates the hallmark effects of stimulating brain reward neurons. Specifically, right, but not left, vagal sensory ganglion activation sustained self-stimulation behavior, conditioned both flavor and place preferences, and induced dopamine release from Substantia nigra. Cell-specific transneuronal tracing revealed asymmetric ascending pathways of vagal origin throughout the CNS. In particular, transneuronal labeling identified the glutamatergic neurons of the dorsolateral parabrachial region as the obligatory relay linking the right vagal sensory ganglion to dopamine cells in Substantia nigra. Consistently, optical activation of parabrachio-nigral projections replicated the rewarding effects of right vagus excitation. Our findings establish the vagal gut-to-brain axis as an integral component of the neuronal reward pathway. They also suggest novel vagal stimulation approaches to affective disorders.


Subject(s)
Intestines/physiology , Reward , Substantia Nigra/physiology , Vagus Nerve/physiology , Afferent Pathways/metabolism , Afferent Pathways/physiology , Animals , Dopamine/metabolism , Dopaminergic Neurons/physiology , Glutamic Acid/metabolism , Intestines/innervation , Male , Mice , Mice, Inbred C57BL , Optogenetics
10.
Physiol Behav ; 181: 75-79, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28867197

ABSTRACT

Melanin-concentrating hormone [MCH] is an important neuromodulator related to motivated behaviors. The MCH-containing neurons are mainly located in the lateral hypothalamic area, zona incerta, and incerto-hypothalamic area. In the medial preoptic area [MPOA], a key region for the regulation of maternal behavior, Pmch mRNA expression and MCH synthesis can be detected exclusively during the lactation period. As litter size affects different parameters of maternal physiology, the aim of this study was to verify whether litter size can modulate the number of MCH-containing neurons in the MPOA of lactating rats. The dams were divided into the following groups: postpartum day 12, 15, or 19, with a large, small or reduced litter. Our results show that the number of MCH-immunoreactive neurons in the MPOA is positively correlated with the number of pups in the litter and that artificially reducing the number of pups can also decrease the number of MCH-immunoreactive neurons in the MPOA.


Subject(s)
Hypothalamic Hormones/physiology , Lactation/physiology , Litter Size/physiology , Melanins/physiology , Neurons/physiology , Pituitary Hormones/physiology , Preoptic Area/physiology , Animals , Cell Count/statistics & numerical data , Female , Postpartum Period/physiology , Rats
11.
Curr Opin Neurobiol ; 44: 152-158, 2017 06.
Article in English | MEDLINE | ID: mdl-28527391

ABSTRACT

The melanin-concentrating hormone (MCH) is an essential neuromodulator involved with homeostatic regulation and motivated behaviors. The majority of MCH neurons are localized within the zona incerta, lateral hypothalamic and incerto-hypothalamic areas but others regions, as the olfactory turbecle, the laterodorsal tegmental nucleus, the paramediam pontine reticular formation and the medial preoptic area, can also express the peptide depending on the gender and metabolic state of the animal. If the MCH on these novel sites of expression are also related with the control of wake-sleep cycle will be discuss in this review.


Subject(s)
Hypothalamic Hormones/metabolism , Melanins/metabolism , Pituitary Hormones/metabolism , Sleep/physiology , Animals , Humans , Sex Factors
12.
J Physiol ; 593(8): 2097-109, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25639597

ABSTRACT

Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice. Using an operant task in which mice are trained to self-administer lipid emulsions directly into the stomach, we show that inhibiting triacylglycerol digestion disrupts normal behaviour of self-administration in mice, indicating that fat sensing is conditional to digestion. When administered separately, both digestion products, 2-monoacylglycerol and fatty acids, were sensed by the mice, and self-administration patterns of fatty acids were affected by the fatty acid chain length. Peripheral plasma concentrations of the gut hormones GLP-1, GIP, PYY, CCK and insulin did not offer an explanation of the differing behavioural effects produced by 2-monoacylglycerol and fatty acids. However, combined with behavioural responses, striatal dopamine effluxes induced by gut infusions of oleic acid were significantly greater than those produced by equivalent infusions of 2-oleoylglycerol. Our data demonstrate recruitment of different signalling pathways by fatty acids and 2-monoacylglycerol, and suggest that the structural properties of fat rather than total caloric value determine intestinal sensing and the assignment of reward value to lipids.


Subject(s)
Behavior, Animal/drug effects , Conditioning, Operant/drug effects , Fatty Acids/metabolism , Intestine, Small/metabolism , Monoglycerides/metabolism , Animals , Choice Behavior/drug effects , Enzyme Inhibitors/pharmacology , Fatty Acids/pharmacology , Intestine, Small/drug effects , Lactones/pharmacology , Lipase/antagonists & inhibitors , Male , Mice , Monoglycerides/pharmacology , Orlistat , Self Administration , Triglycerides/metabolism
13.
J Physiol ; 591(22): 5727-44, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24060992

ABSTRACT

It is well established that animals including humans attribute greater reinforcing value to glucose-containing sugars compared to their non-caloric counterparts, generally termed 'artificial sweeteners'. However, much remains to be determined regarding the physiological signals and brain systems mediating the attribution of greater reinforcing value to sweet solutions that contain glucose. Here we show that disruption of glucose utilization in mice produces an enduring inhibitory effect on artificial sweetener intake, an effect that did not depend on sweetness perception or aversion. Indeed, such an effect was not observed in mice presented with a less palatable, yet caloric, glucose solution. Consistently, hungry mice shifted their preferences away from artificial sweeteners and in favour of glucose after experiencing glucose in a hungry state. Glucose intake was found to produce significantly greater levels of dopamine efflux compared to artificial sweetener in dorsal striatum, whereas disrupting glucose oxidation suppressed dorsal striatum dopamine efflux. Conversely, inhibiting striatal dopamine receptor signalling during glucose intake in sweet-naïve animals resulted in reduced, artificial sweetener-like intake of glucose during subsequent gluco-deprivation. Our results demonstrate that glucose oxidation controls intake levels of sweet tastants by modulating extracellular dopamine levels in dorsal striatum, and suggest that glucose utilization is one critical physiological signal involved in the control of goal-directed sweetener intake.


Subject(s)
Eating/physiology , Glucose/metabolism , Sweetening Agents/metabolism , Animals , Corpus Striatum/metabolism , Corpus Striatum/physiology , Dopamine/metabolism , Hunger/physiology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Receptors, Dopamine/metabolism , Taste/physiology
14.
Science ; 341(6147): 800-2, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23950538

ABSTRACT

Excessive intake of dietary fats leads to diminished brain dopaminergic function. It has been proposed that dopamine deficiency exacerbates obesity by provoking compensatory overfeeding as one way to restore reward sensitivity. However, the physiological mechanisms linking prolonged high-fat intake to dopamine deficiency remain elusive. We show that administering oleoylethanolamine, a gastrointestinal lipid messenger whose synthesis is suppressed after prolonged high-fat exposure, is sufficient to restore gut-stimulated dopamine release in high-fat-fed mice. Administering oleoylethanolamine to high-fat-fed mice also eliminated motivation deficits during flavorless intragastric feeding and increased oral intake of low-fat emulsions. Our findings suggest that high-fat-induced gastrointestinal dysfunctions play a key role in dopamine deficiency and that restoring gut-generated lipid signaling may increase the reward value of less palatable, yet healthier, foods.


Subject(s)
Corpus Striatum/metabolism , Dietary Fats/administration & dosage , Dopamine/metabolism , Endocannabinoids/administration & dosage , Endocannabinoids/physiology , Ethanolamines/administration & dosage , Gastrointestinal Tract/metabolism , Oleic Acids/administration & dosage , Oleic Acids/physiology , Animals , Appetite , Dopamine/deficiency , Endocannabinoids/biosynthesis , Energy Intake , Feeding Behavior , Homeostasis , Intestine, Small/metabolism , Male , Mice , Mice, Inbred C57BL , Oleic Acids/biosynthesis , PPAR alpha/genetics , PPAR alpha/metabolism , Reward , Signal Transduction , Vagus Nerve/physiology
15.
Biol Psychiatry ; 73(9): 851-9, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23587200

ABSTRACT

BACKGROUND: Mounting evidence suggests that overeating may be conceptualized within the same behavioral and neurobiological framework as drug addiction. One potentially important difference between overeating versus drug abuse refers to the sensory stimulation of oral receptors by palatable foods, a feature that may be required for reinforcement during intake. Likewise, postingestive effects and caloric content of food also contribute to reinforcing behavior and might influence the development of compulsive eating behavior. The purpose of the current study was to establish whether intragastric self-administration of fat emulsions, that is, bypassing the oral cavity, recapitulates some of the behavioral and neurobiological hallmarks of psychostimulant self-administration. METHODS: We used behavioral assays in mice to assess acquisition, maintenance, extinction, and reinstatement of intragastric self-administration of lipid emulsions to determine the extent to which postoral fat self-administration recapitulates psychostimulant self-administration. Striatal dopamine efflux during behavioral tasks was determined by brain microdialysis coupled to chromatographic-electrochemical analyses. RESULTS: We show that in direct analogy to drug self-administration, 1) decreases in fat dose concentration were met with compensatory increases in response rates aimed at maintaining constant hourly caloric intake; 2) rates of responding markedly increased during both extinction and progressive ratio schedules of reinforcement; and 3) elevations in striatal dopamine levels observed during maintenance were markedly attenuated during extinction sessions, only to be restored on reinstatement. CONCLUSIONS: Our data thus support the contention that stimulation of oral receptors by caloric foods may not be required for the expression of certain addiction-related neurobehavioral markers.


Subject(s)
Dietary Fats/administration & dosage , Eating/drug effects , Energy Intake/drug effects , Extinction, Psychological/drug effects , Feeding Behavior/drug effects , Animals , Behavior, Animal/drug effects , Conditioning, Operant/drug effects , Male , Mice , Reinforcement Schedule , Reinforcement, Psychology , Self Administration
16.
Elife ; 2: e01462, 2013 Dec 31.
Article in English | MEDLINE | ID: mdl-24381247

ABSTRACT

Sugars that contain glucose, such as sucrose, are generally preferred to artificial sweeteners owing to their post-ingestive rewarding effect, which elevates striatal dopamine (DA) release. While the post-ingestive rewarding effect, which artificial sweeteners do not have, signals the nutrient value of sugar and influences food preference, the neural circuitry that mediates the rewarding effect of glucose is unknown. In this study, we show that optogenetic activation of melanin-concentrating hormone (MCH) neurons during intake of the artificial sweetener sucralose increases striatal dopamine levels and inverts the normal preference for sucrose vs sucralose. Conversely, animals with ablation of MCH neurons no longer prefer sucrose to sucralose and show reduced striatal DA release upon sucrose ingestion. We further show that MCH neurons project to reward areas and are required for the post-ingestive rewarding effect of sucrose in sweet-blind Trpm5(-/-) mice. These studies identify an essential component of the neural pathways linking nutrient sensing and food reward. DOI: http://dx.doi.org/10.7554/eLife.01462.001.


Subject(s)
Glucose/metabolism , Hypothalamus/metabolism , Melanins/metabolism , Neurons/metabolism , Nutritive Value , Animals , Hypothalamus/chemistry , Mice , Reward
17.
Nat Neurosci ; 15(8): 1108-10, 2012 Jun 24.
Article in English | MEDLINE | ID: mdl-22729177

ABSTRACT

It is not known whether behaviors unrelated to feeding are affected by hypothalamic regulators of hunger. We found that impairment of Agouti-related protein (AgRP) circuitry by either Sirt1 knockdown in AgRP-expressing neurons or early postnatal ablation of these neurons increased exploratory behavior and enhanced responses to cocaine. In AgRP circuit-impaired mice, ventral tegmental dopamine neurons exhibited enhanced spike timing-dependent long-term potentiation, altered amplitude of miniature postsynaptic currents and elevated dopamine in basal forebrain. Thus, AgRP neurons determine the set point of the reward circuitry and associated behaviors.


Subject(s)
Agouti-Related Protein/physiology , Behavior, Animal/physiology , Cocaine/pharmacology , Dopaminergic Neurons/physiology , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Animals , Dopamine , Female , Gene Knockdown Techniques , Mice , Mice, Transgenic , Reward
18.
Physiol Behav ; 106(3): 394-9, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22406348

ABSTRACT

Post-ingestive factors are known to strongly modulate feeding behavior by providing feedback signals to the central nervous system on the current physiological state of the organism. Of particular interest is the identification of the physiological pathways that permit the brain to sense post-ingestive signals. We will review recent evidence supporting the concept that direct stimulation of the gastrointestinal tract with nutrients induces release of the catecholamine neurotransmitter dopamine. In addition, changes in dopamine efflux produced by direct stimulation of the gastrointestinal tract were found to reflect the caloric load of the infusates, suggesting that dopamine signaling may function as a central caloric sensor that mediates adjustments in intake according to the caloric density of a meal. Consistent with the above, blockade of dopamine signaling disrupts flavor-nutrient associations and impairs the regulatory capacity to maintain constant caloric intake during intra-gastric feeding. Future research must determine the exact pathways linking gut nutrient administration to dopamine efflux. Current evidence points to parallel contributions by pre- and post-absorptive pathways, indicating that dopamine systems constitute a site of convergence through which distinct physiological signals can exert control over ingestive behaviors.


Subject(s)
Brain/physiology , Dopamine/metabolism , Energy Intake/physiology , Feeding Behavior , Gastrointestinal Tract/physiology , Animals , Eating , Humans , Sensation
19.
J Physiol ; 590(4): 953-72, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22219333

ABSTRACT

Animals, including humans, can achieve precise regulation of caloric intake by adjusting consumption in response to covert changes in energy density. It remains unknown, however, whether the presence of flavour cues are required for the ability to maintain constant caloric intake. Also unknown are the brain circuits that may function as the central calorie monitors that control adaptive adjustments in energy intake. Here we show that mice trained to lick a dry spout in order to receive intra-gastric infusions of a fat emulsion maintained constant hourly caloric intake by adjusting the number of dry licks in response to changes in caloric density. Animals also increased dry licking according to hunger levels, and developed conditioned preferences for dry sippers associated with high calorie infusions. Importantly, striatal dopamine levels were closely associated with the amount of calories ingested, rather than with the number of dry licks produced. Dopamine levels in dorsal and ventral striatum also reflected caloric density in mice passively receiving intra-gastric infusions of fat emulsions. Consistent with the above, systemic administration of the dopamine receptor blocker haloperidol markedly increased the production of dry licks needed to obtain high-calorie infusions, as if the caloric density of the infusions had been diluted. Conversely, haloperidol markedly decreased the production of dry licks needed to obtain low-calorie infusions. Taken together, our results support the proposition that brain dopamine circuits function as one central sensor of calorie ingestion, since (1) extracellular striatal dopamine levels fluctuate in proportion to the caloric density of nutrients infused in the gut; and (2) inhibiting dopamine receptor signalling disrupts the animals' ability to maintain constant caloric intake across experimental sessions.


Subject(s)
Basal Ganglia/physiology , Dietary Fats , Dopamine/physiology , Energy Intake/physiology , Stomach/physiology , Taste/physiology , Animals , Dopamine Antagonists/pharmacology , Feeding Behavior/physiology , Haloperidol/pharmacology , Male , Mice , Mice, Inbred C57BL , Receptors, Dopamine/physiology
20.
Digestion ; 83 Suppl 1: 32-6, 2011.
Article in English | MEDLINE | ID: mdl-21389726

ABSTRACT

Although the umami compound monosodium glutamate (MSG) is a widely used flavor enhancer, controversy still persists regarding the effects of MSG intake on body weight. It has been claimed, in particular, that chronic MSG intake may result in excessive body weight gain and obesity. In this study we assessed the effects of chronic (16 weeks) ad libitum MSG on body weight and metabolism of C57BL6/J mice. Adult male mice were divided in four experimental groups and fed with either a low-fat (LF) or high-fat (HF) diet and with either two bottles of plain water or one bottle containing 1% MSG and another one containing water according to a factorial design. Mice were monitored weekly for body weight and food/fluid intake for 15 weeks. At the end of the experiments, the circulating levels of leptin, insulin, total protein, total cholesterol, triglyceride, blood urea nitrogen, and non-esterified fatty acids were also analyzed. Our results show that MSG intake did not influence body weight in either LF or HF groups. Interestingly, although animals overall displayed strong preferences for MSG against water, preferences were relatively higher in LF compared to HF group. Consistent with the body weight data, while significant differences in leptin, insulin, total cholesterol, and non-esterified fatty acids were found between HF and LF groups, such an effect was not influenced by MSG intake. Finally, indirect calorimetry measurements revealed similar energy expenditure levels between animals being presented water only and MSG only. In summary, our data does not support the notion that ad libitum MSG intake should trigger the development of obesity or other metabolic abnormalities.


Subject(s)
Basal Metabolism/drug effects , Drinking/drug effects , Eating/drug effects , Sodium Glutamate/pharmacology , Weight Gain/drug effects , Analysis of Variance , Animals , Blood Glucose/drug effects , Blood Proteins/drug effects , Blood Urea Nitrogen , Calorimetry, Indirect , Cholesterol/blood , Diet , Fatty Acids, Nonesterified/blood , Glycogen/metabolism , Insulin/blood , Leptin/blood , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Sodium Glutamate/administration & dosage , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...