Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Med Microbiol ; 303(8): 443-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23827141

ABSTRACT

The intestinal opportunistic pathogen Bacteroides fragilis is among the most aerotolerant species of strict anaerobic bacteria and survives exposure to atmospheric oxygen for up to 72h. Under these circumstances, a strong oxygen stress response (OSR) mechanism is activated and the expression of as much as 45% of B. fragilis genes is altered. One of the most important regulators of this response is the product of the oxyR gene, but other regulation systems are in place during the OSR. The MarR family of transcriptional regulators has been shown to control several physiological events in bacteria, including response to stress conditions. In B. fragilis, at least three homologs of MarR regulators are present, one of which, bmoR, is upregulated during oxidative stress independently of oxyR. In this study, we demonstrate that the inactivation of the bmoR gene in B. fragilis diminishes its ability to withstand oxidative stress caused either by exposure to atmospheric oxygen or hydrogen peroxide. Recovery of growth rate on pre-oxidized media under anaerobiosis is slower than that observed in parental strain. Addition of hydrogen peroxide has a similar effect on the growth rate. Complementation of the mutant strain partially recovered the oxygen resistance phenotype, but the overexpression of the gene in the parental strain was also deleterious to a lesser extent. Our results indicate that BmoR has a role in the OSR in B. fragilis, particularly in the initial stages of oxygen exposure.


Subject(s)
Bacteroides fragilis/drug effects , Bacteroides fragilis/physiology , Gene Expression Regulation, Bacterial , Microbial Viability/drug effects , Oxidative Stress , Transcription Factors/metabolism , Anaerobiosis , Bacteroides fragilis/genetics , Bacteroides fragilis/growth & development , Gene Knockout Techniques , Genetic Complementation Test , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Oxygen/metabolism , Oxygen/toxicity , Transcription Factors/genetics
2.
Anaerobe ; 11(5): 295-301, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16701587

ABSTRACT

Quorum sensing is a density-dependent gene regulation mechanism that has been described in many bacterial species in the last decades. Bacteria that use quorum sensing as part of their gene regulation circuits produce molecules called autoinducers that accumulate in the environment and activate target genes in a quorum-dependent way. Some specific clues led us to hypothesize that Bacteroides species can produce autoinducers and possess a quorum sensing system. First, Bacteroides are anaerobic bacteria that are frequently involved in polymicrobial infections. These infections often involve Pseudomonas aeruginosa and Staphylococcus aureus, two of the best understood examples of bacteria that employ quorum sensing systems as part of their pathogenesis. Also, studies have detected the presence of a quorum sensing gene involved in the production of autoinducers in Porphyromonas gingivalis, a species closely related to the Bacteroides genus. These and other evidences prompted us to investigate if Bacteroides strains could produce autoinducer molecules that could be detected by a Vibrio harveyi reporter system. In this paper, we show that supernatants of B. fragilis, B. vulgatus and B. distasonis strains are able to stimulate the V. harveyi quorum sensing system 2. Also, we were able to demonstrate that the stimulation detected is due to the production of autoinducer molecules and not the growth of reporter strains after addition of supernatant. Moreover, the phenomenon observed does not seem to represent the degradation of repressors possibly present in the culture medium used. We could also amplify bands from some of the strains tested using primers designed to the luxS gene of Escherichia coli. Altogether, our results show that B. fragilis, B. vulgatus and B. distasonis (but possibly some other species) can produce V. harveyi autoinducer 2-related molecules. However, the role of such molecules in the biology of these organisms remains unknown.

SELECTION OF CITATIONS
SEARCH DETAIL
...