Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298210

ABSTRACT

Depression is a mental disorder that affects more than 300 million people worldwide. The medications available for treatment take a long time to exhibit therapeutic results and present several side effects. Furthermore, there is a decrease in the quality of life of people suffering from this affliction. Essential oils are traditionally used to relieve the symptoms of depression due to the properties of the constituents of these oils to cross the blood-brain barrier acting on depression-related biological receptors associated with reduced toxicity and side effects. In addition, compared to traditional drugs, they have several administration forms. This review provides a comprehensive assessment of studies on plants whose essential oil has exhibit antidepressant activity in the past decade and the mechanism of action of the major components and models tested. An additional in silico study was conducted with the frequent compounds in the composition of these essential oils, providing a molecular approach to the mechanism of action that has been reported in the past decade. This review is valuable for the development of potential antidepressant medications in addition to providing a molecular approach to the antidepressant mechanism of action of the major volatile compounds that have been reported in the past decade.


Subject(s)
Oils, Volatile , Sesquiterpenes , Humans , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Oils, Volatile/chemistry , Molecular Docking Simulation , Quality of Life , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/chemistry , Monoterpenes/pharmacology
2.
J Mol Model ; 26(11): 318, 2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33099704

ABSTRACT

A hypothetical study by using molecular modeling for antioxidant capacity of kojic acid derivatives was performed using quantum chemistry calculations by DFT/B3LYP/6-311++G(3d,2p). Four modification approaches were considered namely simplification, functional modifications, ring regioisomerism, and hydroxylation. Molecular orbitals, single-electron transfers, hydrogen atom transfers, and spin density distributions were used for antioxidant prediction. In accordance with HOMO, LUMO, Gap, ionization potential, bond dissociation energy, and stabilization energy, the molecular simplifications of kojic acid show that enol moiety is more important for antioxidant capacity than alcohol group. Few molecular modifications on alcohol or enol position were more potent than kojic acid. The π conjugation system among ether, alkene, and hydroxyl moieties can be involved on resonance effects of better compounds. A different performance was observed on alcohol molecular modifications when compared to enol position. All lactone derivatives were more potent than kojic acid on both mechanisms, and their hydroxylated derivatives were more potent than ascorbic acid. In conclusion, the ring regioisomers and its hydroxylated derivatives have better antioxidant capacity than kojic acid. Graphical Abstract The theoretical study using molecular modeling for antioxidant capacity prediction of kojic acid was more related to enol moiety than alcohol. The regioisomerism and hybrid derivatives show that the lactone derivatives increase antioxidant capacity more than the pyrone derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL
...