Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979201

ABSTRACT

Adoptive chimeric antigen receptor T-cell (CAR-T) therapy is transformative and approved for hematologic malignancies, as well being developed for treatment of solid tumors, autoimmune disorders, heart disease and aging. Despite unprecedented clinical outcomes, CAR-T and other engineered cell therapies face a variety of manufacturing and safety challenges. Traditional methods, like lentivirus transduction and electroporation, result in random integration or cause significant cellular damage, which can limit the safety and efficacy of engineered cell therapies, such as CAR-T. We present hydroporation as a gentle and effective alternative for intracellular delivery. Hydroporation resulted in 1.7 to 2x higher CAR-T yields compared to electroporation with superior cell viability and recovery. Hydroporated cells exhibited rapid proliferation, robust target cell lysis and increased pro-inflammatory and regulatory cytokine secretion in addition to improved CAR-T yield by day 5 post-transfection. We demonstrated scaled-up hydroporation can process 5 × 10 8 cells in less than 10 s, showcasing the platform as a viable solution for high-yield CAR-T cell manufacturing with the potential for improved therapeutic outcomes.

2.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617240

ABSTRACT

Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T-cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28 activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFNγ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.

3.
J Reprod Immunol ; 163: 104244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555747

ABSTRACT

Implantation and maintenance of pregnancy involve intricate immunological processes that enable the developing fetus to coexist with the maternal immune system. Progesterone, a critical hormone during pregnancy, is known to promote immune tolerance and prevent preterm labor. However, the mechanism by which progesterone mediates these effects remains unclear. In this study, we investigated the role of the non-classical progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling at the maternal-fetal interface. Using JEG3 cells, a trophoblast model cell line, we observed that progesterone stimulation increased the expression of human leukocyte antigen-C (HLA-C) and HLA-G, key molecules involved in immune tolerance. We also found that progesterone upregulated the expression of the transcription factor ELF3, which is known to regulate trophoblast-specific HLA-C expression. Interestingly, JEG3 cells lacked expression of classical progesterone receptors (PRs) but exhibited high expression of PGRMC1, a finding we confirmed in primary trophoblasts by mining sc-RNA seq data from human placenta. To investigate the role of PGRMC1 in progesterone signaling, we used CRISPR/Cas9 technology to knockout PGRMC1 in JEG3 cells. PGRMC1-deficient cells showed a diminished response to progesterone stimulation. Furthermore, we found that the progesterone antagonist RU486 inhibited ELF3 expression in a PGRMC1-dependent manner, suggesting that RU486 acts as a progesterone antagonist by competing for receptor binding. Additionally, we found that RU486 inhibited cell invasion, an important process for successful pregnancy, and this inhibitory effect was dependent on PGRMC1. Our findings highlight the crucial role of PGRMC1 in mediating the immunoregulatory effects of progesterone at the maternal-fetal interface.


Subject(s)
Membrane Proteins , Progesterone , Receptors, Progesterone , Trophoblasts , Humans , Receptors, Progesterone/metabolism , Female , Pregnancy , Progesterone/metabolism , Progesterone/pharmacology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Trophoblasts/metabolism , Trophoblasts/immunology , Placenta/immunology , Placenta/metabolism , Signal Transduction/immunology , Maternal-Fetal Exchange/immunology , Embryo Implantation/immunology
4.
Methods Mol Biol ; 2748: 243-265, 2024.
Article in English | MEDLINE | ID: mdl-38070118

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has proven to be a successful treatment option for leukemias and lymphomas. These encouraging outcomes underscore the potential of adoptive cell therapy for other oncology applications, namely, solid tumors. However, CAR T cells are yet to succeed in treating solid tumors. Unlike liquid tumors, solid tumors create a hostile tumor microenvironment (TME). CAR T cells must traffic to the TME, survive, and retain their function to eradicate the tumor. Nevertheless, there is no universal preclinical model to systematically test candidate CARs and CAR targets for their capacity to infiltrate and eliminate human solid tumors in vivo. Here, we provide a detailed protocol to evaluate human CAR CD4+ helper T cells and CD8+ cytotoxic T cells in immunodeficient (NSG) mice bearing antigen-expressing human solid tumors.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Animals , Mice , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/genetics , Neoplasms/pathology , T-Lymphocytes , Tumor Microenvironment
5.
Methods Mol Biol ; 2748: 201-241, 2024.
Article in English | MEDLINE | ID: mdl-38070117

ABSTRACT

The adaptive immune system exhibits exquisite specificity and memory and is involved in virtually every process in the human body. Redirecting adaptive immune cells, in particular T cells, to desired targets has the potential to lead to the creation of powerful cell-based therapies for a wide range of maladies. While conventional effector T cells (Teff) would be targeted towards cells to be eliminated, such as cancer cells, immunosuppressive regulatory T cells (Treg) would be directed towards tissues to be protected, such as transplanted organs. Chimeric antigen receptors (CARs) are designer molecules comprising an extracellular recognition domain and an intracellular signaling domain that drives full T cell activation directly downstream of target binding. Here, we describe procedures to generate and evaluate human CAR CD4+ helper T cells, CD8+ cytotoxic T cells, and CD4+FOXP3+ regulatory T cells.


Subject(s)
Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes, Regulatory , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
6.
Mol Ther ; 31(9): 2591-2599, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37481703

ABSTRACT

Lymphodepleting pre-conditioning is a nearly universal component of T cell adoptive transfer protocols. The side effects of pre-conditioning regimens used in adoptive cell therapy are clinically significant and include pan-cytopenia, immune suppression, and reactive myelopoiesis. We conducted studies to test the hypothesis that the mechanisms underlying effective engraftment are cell autonomous and not dependent on a lymphodepleted host immune status. These studies leveraged mouse models to examine the role of Stat5 signaling during T cell adoptive transfer. We observed that, by transiently expressing a constitutively active mutamer of Stat5b during the process of adoptive transfer, we could completely obviate the need for lymphodepletion prior to adoptive transfer. Using several functional assays, we benchmark the function of the engrafted T cells against T cells transferred after conventional lymphodepletion. These studies identify a cell-autonomous mechanism driven by transient Stat5b signaling with lasting effects on T cell phenotype and function. Furthermore, the results presented suggest that adoptive T cell therapy could be improved by removing lymphodepletion protocols entirely and replacing them with RNA transfection of T cells with transcripts encoding active Stat5.


Subject(s)
Signal Transduction , T-Lymphocytes , Mice , Animals , Adoptive Transfer , Immunotherapy, Adoptive/methods
7.
Carbohydr Polym ; 306: 120613, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36746564

ABSTRACT

This study reports the fundamental understanding of mucus-modulatory strategies combining charged biopolymers with distinct molecular weights and surface charges. Here, key biophysical evidence supports that low-molecular-weight (Mw) polycation chitosan oligosaccharides (COSs) and high-Mw polyanion dextran sulfate (DS) exhibit distinct thermodynamic signatures upon interaction with mucin (MUC), the main protein of mucus. While the COS â†’ MUC microcalorimetric titrations released ~14 kcal/mol and ~60 kcal/mol, the DS â†’ MUC titrations released ~1200 and ~1450 kcal/mol at pH of 4.5 and 6.8, respectively. The MPT-2 titrations of COS â†’ MUC and DS â†’ MUC indicated a greater zeta potential variation at pH = 4.5 (relative variation = 815 % and 351 %, respectively) than at pH = 6.8 (relative variation = 282 % and 136 %, respectively). Further, the resultant binary (COS-MUC) and ternary (COS-DS-MUC) complexes showed opposite behavior (aggregation and charge inversion events) according to the pH environment. Most importantly, the results indicate that electrostatics could not be the driving force that governs COS-MUC interactions. To account for this finding, we proposed a two-level abstraction model. Macro features emerge collectively from individual interactions occurring at the molecular level. Therefore, to understand the outcomes of mucus modulatory strategy based on charged biopolymers it is necessary to integrate both visions into the same picture.


Subject(s)
Chitosan , Chitosan/chemistry , Dextran Sulfate/chemistry , Biopolymers/chemistry , Mucus/metabolism , Mucins/metabolism
8.
Clin Immunol ; 246: 109201, 2023 01.
Article in English | MEDLINE | ID: mdl-36470337

ABSTRACT

Novel biologics are currently being tested in clinical trials for the treatment of autoimmune diseases and the prevention of transplant allograft rejection. Their premise is to deliver highly efficient immunosuppression while minimizing side-effects, as they specifically target inflammatory mediators involved in the dysregulation of the immune system. However, the pleiotropism of soluble mediators and cell-to-cell interactions with potential to exert both proinflammatory and regulatory influences on the outcome of the immune response can lead to unpredictable results. Predicting responses to biologic drugs requires mechanistic understanding of the cell type-specific effect of immune mediators. Elucidation of the central role of regulatory T cells (Treg), a small subset of T cells dedicated to immune homeostasis, in preventing the development of auto- and allo-immunity has provided a deeper understanding of the signaling pathways that govern immune tolerance. This review focuses on the requisite signals that promote Treg homeostasis and discusses the anticipated outcomes of biologics targeting these signals. Our goal is to inform and facilitate the design of cell-specific biologics that thwart T effector cells (Teff) while promoting Treg function for the treatment of autoimmune diseases and the prevention of transplant rejection.


Subject(s)
Autoimmune Diseases , Biological Products , Humans , T-Lymphocytes, Regulatory , Biological Products/pharmacology , Biological Products/therapeutic use , Autoimmune Diseases/drug therapy , Immune Tolerance , Homeostasis
9.
Front Immunol ; 13: 1042622, 2022.
Article in English | MEDLINE | ID: mdl-36466853

ABSTRACT

TNFa blocking agents were the first-in-class biologic drugs used for the treatment of autoimmune disease. Paradoxically, however, exacerbation of autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine that has both proinflammatory and regulatory effects on CD4+ T cells and can influence the adaptive immune response against autoantigens. Here, we critically appraise the literature and discuss the intricacies of TNFa signaling that may explain the controversial findings of previous studies. The pleiotropism of TNFa is based in part on the existence of two biologically active forms of TNFa, soluble and membrane-bound, with different affinities for two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse downstream molecular pathways involved in cell fate decisions and immune function. Distinct membrane expression patterns of TNF receptors by CD4+ T cell subsets and their preferential binding of distinct forms of TNFα produced by a diverse pool of cellular sources during different stages of an immune response are important determinants of the differential outcomes of TNFa-TNF receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on select CD4+ T cell subsets may offer specific therapeutic interventions to dampen inflammation while fortifying immune regulation for the treatment of autoimmune diseases.


Subject(s)
Autoimmune Diseases , Tumor Necrosis Factor-alpha , Humans , T-Lymphocytes , Lymphocyte Count , Signal Transduction , CD4-Positive T-Lymphocytes
10.
Sci Rep ; 12(1): 13053, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906253

ABSTRACT

We hypothesized that thalamic volumes of patients with type 1 diabetes mellitus (DM) and nonpainful diabetic peripheral neuropathy (DPN) would be reduced relative to thalamic volumes of patients with type 1 DM and painful DPN. We calculated the standardized thalamic volumetric difference between these groups in a pilot sample to obtain a statistical power of 80% at a 5% significance level. Hence, we measured thalamic volumes from 15 patients with nonpainful DPN (10 women, mean age = 49 years, standard deviation [SD] = 11.5) and from 13 patients with painful DPN (8 women, mean age = 43 years, SD = 12.5) by using a manual segmentation approach. A volumetric difference of approximately 15% was found between the nonpainful (mean = 5072 mm3, SD = 528.1) and painful (mean = 5976 mm3, SD = 643.1) DPN groups (P < 0.001). Curiously, a volumetric difference between the left (mean = 5198 mm3, SD = 495.0) and the right (mean = 4946 mm3, SD = 590.6) thalamus was also found in patients with nonpainful DPN (P < 0.01), but not in patients with painful DPN (P = 0.97). Patients with nonpainful DPN have lower thalamic volumes than those with painful DPN, especially in the right thalamus.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Neuropathies , Adult , Diabetes Mellitus, Type 1/complications , Diabetic Neuropathies/diagnostic imaging , Diabetic Neuropathies/etiology , Female , Humans , Middle Aged , Pain , Thalamus/diagnostic imaging
11.
J Biomed Mater Res A ; 110(5): 1166-1181, 2022 05.
Article in English | MEDLINE | ID: mdl-35043549

ABSTRACT

Based on statistical data reported in 2020, cancer was responsible for approximately 10 million deaths. Furthermore, 17 million new cases were diagnosed worldwide. Nanomedicine and immunotherapy have shown satisfactory clinical results among all scientific and technological alternatives for the treatment of cancer patients. Immunotherapy-based treatments comprise the consideration of new alternatives to hinder neoplastic proliferation and to reduce adverse events in the body, thereby promoting immune destruction of diseased cells. Additionally, nanostructured systems have been proven to elicit specific immune responses that may enhance anti-tumor activity. A new generation of nanomedicines, based on biomimetic and bioinspired systems, has been proposed to target tumors by providing immunomodulatory features and by enabling recovery of human immune destruction capacity against cancer cells. This review provides an overview of the aspects and the mechanisms by which nanomedicines can be used to enhance clinical procedures using the immune modulatory responses of nanoparticles (NPs) in the host defense system. We initially outline the cancer statistics for conventional and new treatment approaches providing a brief description of the human host defense system and basic principles of NP interactions with monocytes, leukocytes, and dendritic cells for the modulation of antitumor immune responses. A report on different biomimetic and bioinspired systems is also presented here and their particularities in cancer treatments are addressed, highlighting their immunomodulatory properties. Finally, we propose future perspectives regarding this new therapeutic strategy, highlighting the main challenges for future use in clinical practice.


Subject(s)
Nanoparticles , Neoplasms , Humans , Immunity , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunotherapy/methods , Nanomedicine/methods , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Tumor Microenvironment
12.
Mol Metab ; 56: 101417, 2022 02.
Article in English | MEDLINE | ID: mdl-34902607

ABSTRACT

BACKGROUND: Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to ß-cell antigens and progressive destruction of insulin-producing ß-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW: Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS: To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Animals , Diabetes Mellitus, Type 1/genetics , Humans , Immune System/pathology , Insulin-Secreting Cells/pathology , Mice
13.
Front Immunol ; 13: 1075813, 2022.
Article in English | MEDLINE | ID: mdl-36591309

ABSTRACT

Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.


Subject(s)
Autoimmune Diseases , Immunity, Innate , Humans , Lymphocytes , Autoimmune Diseases/therapy , Autoimmunity , Autoantigens
15.
Front Immunol ; 12: 686439, 2021.
Article in English | MEDLINE | ID: mdl-34616392

ABSTRACT

Infusion of regulatory T cells (Tregs) engineered with a chimeric antigen receptor (CAR) targeting donor-derived human leukocyte antigen (HLA) is a promising strategy to promote transplant tolerance. Here, we describe an anti-HLA-A2 CAR (A2-CAR) generated by grafting the complementarity-determining regions (CDRs) of a human monoclonal anti-HLA-A2 antibody into the framework regions of the Herceptin 4D5 single-chain variable fragment and fusing it with a CD28-ζ signaling domain. The CDR-grafted A2-CAR maintained the specificity of the original antibody. We then generated HLA-A2 mono-specific human CAR Tregs either by deleting the endogenous T-cell receptor (TCR) via CRISPR/Cas9 and introducing the A2-CAR using lentiviral transduction or by directly integrating the CAR construct into the TCR alpha constant locus using homology-directed repair. These A2-CAR+TCRdeficient human Tregs maintained both Treg phenotype and function in vitro. Moreover, they selectively accumulated in HLA-A2-expressing islets transplanted from either HLA-A2 transgenic mice or deceased human donors. A2-CAR+TCRdeficient Tregs did not impair the function of these HLA-A2+ islets, whereas similarly engineered A2-CAR+TCRdeficientCD4+ conventional T cells rejected the islets in less than 2 weeks. A2-CAR+TCRdeficient Tregs delayed graft-versus-host disease only in the presence of HLA-A2, expressed either by co-transferred peripheral blood mononuclear cells or by the recipient mice. Altogether, we demonstrate that genome-engineered mono-antigen-specific A2-CAR Tregs localize to HLA-A2-expressing grafts and exhibit antigen-dependent in vivo suppression, independent of TCR expression. These approaches may be applied towards developing precision Treg cell therapies for transplant tolerance.


Subject(s)
Antibodies/metabolism , HLA-A2 Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes, Regulatory/transplantation , Transplantation Tolerance , Animals , Cell Engineering , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , Humans , Immunotherapy, Adoptive , Male , Mice , Mice, Inbred NOD , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
16.
Int J Pharm ; 603: 120714, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34015380

ABSTRACT

Mutations on the epidermal growth factor receptor (EGFR), induction of angiogenesis, and reprogramming cellular energetics are all biological features acquired by tumor cells during tumor development, and also known as the hallmarks of cancer. Targeted therapies that combine drugs that are capable of acting against such concepts are of great interest, since they can potentially improve the therapeutic efficacy of treatments of complex pathologies, such as glioblastoma (GBM). However, the anatomical location and biological behavior of this neoplasm imposes great challenges for targeted therapies. A novel strategy that combines alpha-cyano-4-hydroxycinnamic acid (CHC) with the monoclonal antibody cetuximab (CTX), both carried onto a nanotechnology-based delivery system, is herein proposed for GBM treatment via nose-to-brain delivery. The biological performance of Poly (D,L-lactic-co-glycolic acid)/chitosan nanoparticles (NP), loaded with CHC, and conjugated with CTX by covalent bonds (conjugated NP) were extensively investigated. The NP platforms were able to control CHC release, indicating that drug release was driven by the Weibull model. An ex vivo study with nasal porcine mucosa demonstrated the capability of these systems to promote CHC and CTX permeation. Blot analysis confirmed that CTX, covalently associated to NP, impairs EGRF activation. The chicken chorioallantoic membrane assay demonstrated a trend of tumor reduction when conjugated NP were employed. Finally, images acquired by fluorescence tomography evidenced that the developed nanoplatform was effective in enabling nose-to-brain transport upon nasal administration. In conclusion, the developed delivery system exhibited suitability as an effective novel co-delivery approaches for GBM treatment upon intranasal administration.


Subject(s)
Glioblastoma , Nanoparticles , Pharmaceutical Preparations , Administration, Intranasal , Animals , Brain , Cell Line, Tumor , Drug Delivery Systems , Glioblastoma/drug therapy , Swine
17.
Front Immunol ; 12: 639818, 2021.
Article in English | MEDLINE | ID: mdl-33833759

ABSTRACT

Anti-CD19 chimeric antigen receptor (CD19-CAR)-engineered T cells are approved therapeutics for malignancies. The impact of the hinge domain (HD) and the transmembrane domain (TMD) between the extracellular antigen-targeting CARs and the intracellular signaling modalities of CARs has not been systemically studied. In this study, a series of 19-CARs differing only by their HD (CD8, CD28, or IgG4) and TMD (CD8 or CD28) was generated. CARs containing a CD28-TMD, but not a CD8-TMD, formed heterodimers with the endogenous CD28 in human T cells, as shown by co-immunoprecipitation and CAR-dependent proliferation of anti-CD28 stimulation. This dimerization was dependent on polar amino acids in the CD28-TMD and was more efficient with CARs containing CD28 or CD8 HD than IgG4-HD. The CD28-CAR heterodimers did not respond to CD80 and CD86 stimulation but had a significantly reduced CD28 cell-surface expression. These data unveiled a fundamental difference between CD28-TMD and CD8-TMD and indicated that CD28-TMD can modulate CAR T-cell activities by engaging endogenous partners.


Subject(s)
CD28 Antigens/immunology , Protein Domains/immunology , Receptors, Chimeric Antigen/immunology , Antigens, CD19/immunology , Dimerization , Humans , Lymphocyte Activation/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology
18.
Front Immunol ; 12: 783282, 2021.
Article in English | MEDLINE | ID: mdl-35003100

ABSTRACT

Treg therapies are being tested in clinical trials in transplantation and autoimmune diseases, however, the impact of inflammation on Tregs remains controversial. We challenged human Tregs ex-vivo with pro-inflammatory cytokines IL-6 and TNFα and observed greatly enhanced proliferation stimulated by anti-CD3 and anti-CD28 (aCD3/28) beads or CD28 superagonist (CD28SA). The cytokine-exposed Tregs maintained high expression of FOXP3 and HELIOS, demethylated FOXP3 enhancer, and low IFNγ, IL-4, and IL-17 secretion. Blocking TNF receptor using etanercept or deletion of TNF receptor 2 using CRISPR/Cas9 blunted Treg proliferation and attenuated FOXP3 and HELIOS expression. These results prompted us to consider using CD28SA together with IL-6 and TNFα without aCD3/28 beads (beadless) as an alternative protocol for therapeutic Treg manufacturing. Metabolomics profiling revealed more active glycolysis and oxidative phosphorylation, increased energy production, and higher antioxidant potential during beadless Treg expansion. Finally, beadless expanded Tregs maintained suppressive functions in vitro and in vivo. These results demonstrate that human Tregs positively respond to proinflammatory cytokines with enhanced proliferation without compromising their lineage identity or function. This property can be harnessed for therapeutic Treg manufacturing.


Subject(s)
Graft vs Host Disease/therapy , Immunotherapy, Adoptive/methods , Interleukin-6/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Necrosis Factor-alpha/metabolism , Adult , Aged , Animals , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Etanercept/pharmacology , Female , Forkhead Transcription Factors/analysis , Forkhead Transcription Factors/metabolism , Graft vs Host Disease/immunology , Healthy Volunteers , Humans , Ikaros Transcription Factor/analysis , Ikaros Transcription Factor/metabolism , Male , Mice , Middle Aged , Primary Cell Culture , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/transplantation , Transplantation, Heterologous/adverse effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Young Adult
19.
Carbohydr Polym ; 250: 116968, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33049864

ABSTRACT

Chitosan-based particles are widely proposed as biocompatible drug delivery systems with mucoadhesive and permeation enhancing properties. However, strategies on how to modulate the intended biological responses are still scarce. Considering that particle properties affect the biological outcome, the rational design of the synthesis variables should be proposed to engineer drug delivery systems with improved biological performance. The purpose of this review is to establish a deeper understanding of possible correlations between these variables and the particle properties from theoretical and experimental perspectives. The fundamental physicochemical knowledge of chitosan-based polyelectrolyte complexation and surface modification is discussed focusing on chitosan-TPP, polyelectrolyte complexes, and chitosan-surface modified PLGA or lipid particles. A set of design considerations is proposed to enable future investigation in the development of chitosan particles with modulated properties. The approach presented here contributes to the rational design of chitosan-based particles that meet different requirements for biological activities.


Subject(s)
Chitosan/chemistry , Drug Delivery Systems , Nanoparticles/administration & dosage , Polyelectrolytes/chemistry , Nanoparticles/chemistry
20.
Int Immunol ; 32(12): 771-783, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32808986

ABSTRACT

Diet is an environmental factor in autoimmune disorders, where the immune system erroneously destroys one's own tissues. Yet, interactions between diet and autoimmunity remain largely unexplored, particularly the impact of immunogenetics, one's human leukocyte antigen (HLA) allele make-up, in this interplay. Here, we interrogated animals and plants for the presence of epitopes implicated in human autoimmune diseases. We mapped autoimmune epitope distribution across organisms and determined their tissue expression pattern. Interestingly, diet-derived epitopes implicated in a disease were more likely to bind to HLA alleles associated with that disease than to protective alleles, with visible differences between organisms with similar autoimmune epitope content. We then analyzed an individual's HLA haplotype, generating a personalized heatmap of potential dietary autoimmune triggers. Our work uncovered differences in autoimmunogenic potential across food sources and revealed differential binding of diet-derived epitopes to autoimmune disease-associated HLA alleles, shedding light on the impact of diet on autoimmunity.


Subject(s)
Autoimmune Diseases/immunology , Autoimmunity/immunology , Diet , Major Histocompatibility Complex/immunology , Alleles , Epitopes/immunology , Humans , Major Histocompatibility Complex/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...