Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36982993

ABSTRACT

Cancer biologists have focused on studying cancer stem cells (CSCs) because of their ability to self-renew and recapitulate tumor heterogeneity, which increases their resistance to chemotherapy and is associated with cancer relapse. Here, we used two approaches to isolate CSCs: the first involved the metabolic enzyme aldehyde dehydrogenase ALDH, and the second involved the three cell surface markers CD44, CD117, and CD133. ALDH cells showed a higher zinc finger E-box binding homeobox 1 (ZEB1) microRNA (miRNA) expression than CD44/CD117/133 triple-positive cells, which overexpressed miRNA 200c-3p: a well-known microRNA ZEB1 inhibitor. We found that ZEB1 inhibition was driven by miR-101-3p, miR-139-5p, miR-144-3p, miR-199b-5p, and miR-200c-3p and that the FaDu Cell Line inhibition occurred at the mRNA level, whereas HN13 did not affect mRNA expression but decreased protein levels. Furthermore, we demonstrated the ability of the ZEB1 inhibitor miRNAs to modulate CSC-related genes, such as TrkB, ALDH, NANOG, and HIF1A, using transfection technology. We showed that ALDH was upregulated upon ZEB1-suppressed miRNA transfection (Mann-Whitney ** p101 = 0.009, t-test ** p139 = 0.009, t-test ** p144 = 0.002, and t-test *** p199 = 0.0006). Overall, our study enabled an improved understanding of the role of ZEB1-suppressed miRNAs in CSC biology.


Subject(s)
Head and Neck Neoplasms , MicroRNAs , Humans , MicroRNAs/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Recurrence, Local/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Head and Neck Neoplasms/genetics , Neoplastic Stem Cells/metabolism , RNA, Messenger/genetics , Cell Movement/genetics , Cell Proliferation
2.
Am J Cancer Res ; 12(9): 4196-4210, 2022.
Article in English | MEDLINE | ID: mdl-36225637

ABSTRACT

(1) Head and neck cancer (HNC) is the sixth most common cancer worldwide and show low survival rates and drug resistance, which can be due to the presence of cancer stem cells (CSCs), a small cell population with metastatic potential, invasion and self-renewal ability. (2) Here, seven tumor cells were sorted as CD44+/CD117+/CD133+ or ALDH+, considered as HNC stem cells (HNCSCs), and as CD44-/CD117-/CD133- or ALDH-, considered non-HNCSCs after both cells sorted criteria was compared to evaluate cell migration, invasion, and colony forming assays. These subpopulations were treated with Cetuximab, Paclitaxel, or a combination of both drugs and evaluated for cell viability. Quantitative PCR and western blot were performed to evaluate EGFR, TRKB, KRAS and HIF-1α gene and protein expression. (3) HNCSCs presented more colonies and appeared to be more sensitive to the drug combination when compared with non-HNCSCs, regardless cells sorted criteria and primary tumor subsite. The EGFR, TRKB, KRAS and HIF-1α genes and proteins were upregulated in CSCs compared with non-HNCSCs, thus explaining the drug resistance. (4) This study contributes to the better development of specific therapeutic protocols based on Cetuximab and Paclitaxel drugs in the treatment of HNC in the presence of CSCs and cell proliferation biomarkers.

3.
Int J Mol Sci ; 23(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35806488

ABSTRACT

Mutations and alterations in the expression of VEGFA, KRAS, and NFE2L2 oncogenes play a key role in cancer initiation and progression. These genes are enrolled not only in cell proliferation control, but also in angiogenesis, drug resistance, metastasis, and survival of tumor cells. MicroRNAs (miRNAs) are small, non-coding regulatory RNA molecules that can regulate post-transcriptional expression of multiple target genes. We aimed to investigate if miRNAs hsa-miR-17-5p, hsa-miR-140-5p, and hsa-miR-874-3p could interfere in VEGFA, KRAS, and NFE2L2 expression in cell lines derived from head and neck cancer (HNC). FADU (pharyngeal cancer) and HN13 (oral cavity cancer) cell lines were transfected with miR-17-5p, miR-140-5p, and miR-874-3p microRNA mimics. RNA and protein expression analyses revealed that miR-17-5p, miR-140-5p and miR-874-3p overexpression led to a downregulation of VEGFA, KRAS, and NFE2L2 gene expression in both cell lines analyzed. Taken together, our results provide evidence for the establishment of new biomarkers in the diagnosis and treatment of HNC.


Subject(s)
Head and Neck Neoplasms , MicroRNAs , NF-E2-Related Factor 2 , Proto-Oncogene Proteins p21(ras) , Vascular Endothelial Growth Factor A , Down-Regulation , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oncogenes , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
4.
Am J Transl Res ; 13(1): 143-155, 2021.
Article in English | MEDLINE | ID: mdl-33527014

ABSTRACT

Laryngeal cancer (LC) is one of the common head and neck neoplasms and is characterized by resistance to conventional therapy and poor prognosis. This may result from the presence of cancer stem cells (CSCs), which form a small population in tumors with metastatic potential, high invasive capacity, self-renewal, and differentiation. This study aimed to evaluate the effectiveness of 5-fluorouracil and cisplatin individually, as well as the combination of cetuximab and paclitaxel in a CSC subpopulation separated with biomarkers related to tumoral growth (CD44, CD117, and CD133). In addition, expression of TrkB, KRAS, HIF-1α, and VEGF-A genes and proteins related to cell proliferation were evaluated in this subpopulation. The CD44, CD133, and CD117 biomarkers were used to analyze the identification and separation of both subpopulations using FACSAria Fusion. Subpopulations positive for CD44, CD133, and CD117 or lacking these biomarkers were classified as laryngeal cancer stem cells (LCSCs) or laryngeal cancer non-stem cells (non-LCSCs), respectively. Matrigel invasion and colony forming assays were performed to confirm CSC presence. Subpopulations were cultured and exposed to 5-fluorouracil, cisplatin, and cetuximab/paclitaxel drugs for 24 h. Cell proliferation was determined using MTS assay. KRAS and TrkB gene expression levels were evaluated using quantitative real time PCR with TaqMan® Assay in both subpopulations. The non-LCSC subpopulation was considered as the control for relative expression. We found that the LCSC subpopulation demonstrated more resistance to cetuximab and paclitaxel combination chemotherapy when compared with the non-LCSC subpopulation of the cell line. These LCSC subpopulations presented up-regulated expression of KRAS, HIF-1α, and VEGF-A genes and proteins and no TrkB gene expression, but TrkB protein expression was up-regulated in the LC cell line when compared to the non-CSC subpopulation. "In conclusion, the combination of CD44, CD133, and CD117 biomarkers has stem cell properties. Moreover, LCSCs, are capable of resisting treatment and present high KRAS, HIF-1α, and VEGF-A gene expression".

5.
Leuk Lymphoma ; 60(3): 805-811, 2019 03.
Article in English | MEDLINE | ID: mdl-30188232

ABSTRACT

Chronic myeloid leukemia (CML) is a stem cell derived malignant disorder result of translocation t(9;22)(q34;q11) called Philadelphia chromosome (Ph+). microRNAS (miRNAs) are involved in several biological processes, altering the progression of various pathologies, including CML. This study evaluated whether circulating miRNAs display differential expression profiles in peripheral blood of CML-Chronic Phase (CML-CP) patients newly diagnosed in comparison with CML-CP treated with imatinib. We obtained peripheral blood samples from CML-CP Ph+ patients divided among group 1 (untreated newly diagnosed) and group 2 (treated with imatinib). A pool of total leukocytes from healthy donors was considered as control group. Expression analyses were performed for 768 miRNAs by RT-qPCR array. Bioinformatic tools were used to identify significant pathways and interaction networks. We found 80 deregulated miRNAs between the groups and, according to bioinformatic analysis, they are involved in different pathways, including molecular mechanisms of cancer. The study allows better understanding of disease molecular behavior, and it is useful for possible monitoring CML treatment and prognostic biomarkers identification.


Subject(s)
Biomarkers, Tumor , Circulating MicroRNA , Imatinib Mesylate/therapeutic use , Leukemia, Myeloid, Chronic-Phase/drug therapy , Leukemia, Myeloid, Chronic-Phase/genetics , Protein Kinase Inhibitors/therapeutic use , Transcriptome , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Humans , Imatinib Mesylate/administration & dosage , Imatinib Mesylate/adverse effects , Leukemia, Myeloid, Chronic-Phase/blood , Leukemia, Myeloid, Chronic-Phase/diagnosis , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects
6.
Am J Cancer Res ; 8(8): 1633-1641, 2018.
Article in English | MEDLINE | ID: mdl-30210931

ABSTRACT

Recent evidence suggests that cancer stem cells (CSCs), a small population of cancer cells that are highly tumourigenic, capable of self-renewal and have the ability to differentiate into cells that constitute the tumor, are the "drivers" of local recurrence and metastatic spread and may be associated with resistant to conventional therapy. The objectives of the study are to identify and characterize two head and neck cancer cell lines with regard CD44high/CD133high/CD117high profile (CSCs) and CD44low/CD133low/CD117low profile (Non-CSCs); to investigate the influence of chemotherapy treatment in CSCs and compare with Non-CSCs; to evaluate CD44 and EGFR gene expression in CSCs. Fluorescent-activated cell sorting (FACS) using specific cell surface marker combination (CD44, CD117 and CD133) was performed to isolate CSCs of Non-CSCs from cell lines. The Wound Healing assay was performed to confirm the presence of CSCs. After, the CSCs subpopulation and Non-CSCs were cultured and exposed for 24 h to Cetuximab and Paclitaxel treatment, separately. Cell proliferation was determined by MTS assay. CD44 and EGFR gene expression was quantified by quantitative real time PCR (qPCR) using TaqMan® Assay in both subpopulations. CSCs subpopulation untreated were considered as relative expression control. We firstly characterized CSCs in HN13 and HEP-2 cell lines with CD44, CD133 and CD117 biomarkers. We treated CSCs and Non-CSCs subpopulations with Cetuximab and Paclitaxel treatment and found that CSCs subpopulations demonstrated more resistance to Paclitaxel chemoterapy, when compared with Non-CSCs subpopulations of oral cancer cell line. These CSCs subpopulations presented up-regulation of CD44 gene and down-regulation of EGFR gene in oral cancer cell line, and down-regulation of CD44 gene and up-regulation of EGFR gene in laryngeal cancer cell line when compared with Non-CSCs subpopulations. We conclude that the combination of CD44, CD133 and CD117 biomarkers have stem cell properties in both cell lines. CSCs has ability to resist to Paclitaxel treatment in oral cancer cell line. CSCs present high expression of CD44 gene and down expression of EGFR gene in oral cancer cell line. CSCs in laryngeal cell line present down expression of CD44 gene and high expression of EGFR gene when compared with cells without characteristics of cancer stem cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...