Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 14(2): 129, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792589

ABSTRACT

Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.


Subject(s)
Melanoma , Monocytes , Mice , Animals , Monocytes/metabolism , Cell Differentiation , Cholesterol/metabolism , Antigen Presentation , Dendritic Cells/metabolism , Tumor Microenvironment
2.
Elife ; 112022 10 25.
Article in English | MEDLINE | ID: mdl-36281643

ABSTRACT

Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.


Colorectal cancer remains one of the most widespread and deadly cancers worldwide. Poor health outcomes are usually linked to diseased cells spreading from the intestine to create new tumors in the liver or other parts of the body. Treatment involves surgically removing the initial tumors in the bowel, but patient survival could be improved if, in parallel, their immune system was 'boosted' to destroy cancer cells before they can form other tumors. Interferon alpha is a small protein which helps to coordinate how the immune system recognizes and deactivates foreign agents and cancerous cells. It has recently been trialed as a colorectal cancer treatment to prevent tumors from spreading to the liver, but only with limited success. This partly because interferon-alpha is usually administered in high and pulsed doses, which cause severe side effects through the body. Instead, Tran, Ferreira, Alvarez-Moya et al. aimed to investigate whether continuously delivering lower amounts of the drug could be a better approach. This strategy was tested on mice in which colorectal cancer cells had been implanted into the wall of the large intestine. Continuous administration minimized the risk of the implanted cancer cells spreading to the liver while also creating fewer side effects. The team was able to identify an optimum delivery strategy by varying how much interferon-alpha the animals received and when. Further experiments also revealed a new mechanism by which interferon-alpha prevented the spread of colorectal cancer. Upon receiving continuous doses of the drug, a group of liver cells started to generate a physical barrier which stopped cancer cells from being able to invade the organ. The treatment also promoted long-term immune responses that targeted diseased cells while being safe for healthy tissues. If confirmed in clinical trials, these results suggest that colorectal patients undergoing tumor removal surgery may benefit from also receiving interferon-alpha through continuous delivery.


Subject(s)
Colorectal Neoplasms , Interferon-alpha , Animals , Mice , Endothelial Cells/pathology , CD8-Positive T-Lymphocytes , Liver , Hepatocytes , Colorectal Neoplasms/pathology
3.
Nanomaterials (Basel) ; 12(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35630890

ABSTRACT

Food-grade titanium dioxide (E171) contains variable percentages of titanium dioxide (TiO2) nanoparticles (NPs), posing concerns for its potential effects on human and animal health. Despite many studies, the actual relationship between the physicochemical properties of E171 NPs and their interaction with biological targets is still far from clear. We evaluated the impact of acute E171 administration on invertebrate and vertebrate animals. In the nematode, Caenorhabditis elegans, the administration of up to 1.0 mg/mL of E171 did not affect the worm's viability and lifespan, but significantly impaired its pharyngeal function, reproduction, and development. We also investigated whether the intravenous administration of E171 in mice (at the dose of 6 mg/kg/body weight) could result in an acute over-absorption of filter organs. A significant increase of hepatic titanium concentration and the formation of microgranulomas were observed. Interstitial inflammation and parenchymal modification were found in the lungs, coupled with titanium accumulation. This was probably due to the propensity of TiO2 NPs to agglomerate, as demonstrated by transmission electron microscopy experiments showing that the incubation of E171 with serum promoted the formation of compact clusters. Overall, these data emphasize the actual risk for human and animal exposure to E171.

4.
ACS Nano ; 15(6): 9701-9716, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34009950

ABSTRACT

Over the last years, advancements in the use of nanoparticles for biomedical applications have clearly showcased their potential for the preparation of improved imaging and drug-delivery systems. However, compared to the vast number of currently studied nanoparticles for such applications, only a few successfully translate into clinical practice. A common "barrier" that prevents nanoparticles from efficiently delivering their payload to the target site after administration is related to liver filtering, mainly due to nanoparticle uptake by macrophages. This work reports the physicochemical and biological investigation of disulfide-bridged organosilica nanoparticles with cage-like morphology, OSCs, assessing in detail their bioaccumulation in vivo. The fate of intravenously injected 20 nm OSCs was investigated in both healthy and tumor-bearing mice. Interestingly, OSCs exclusively colocalize with hepatic sinusoidal endothelial cells (LSECs) while avoiding Kupffer-cell uptake (less than 6%) under both physiological and pathological conditions. Our findings suggest that organosilica nanocages hold the potential to be used as nanotools for LSECs modulation, potentially impacting key biological processes such as tumor cell extravasation and hepatic immunity to invading metastatic cells or a tolerogenic state in intrahepatic immune cells in autoimmune diseases.


Subject(s)
Endothelial Cells , Nanoparticles , Animals , Drug Delivery Systems , Kupffer Cells , Liver , Mice
5.
Front Immunol ; 11: 1122, 2020.
Article in English | MEDLINE | ID: mdl-32670275

ABSTRACT

Acute inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens or cell damage, and is essential for immune defense and proper healing. However, unresolved inflammation can lead to chronic disorders, including cancer and fibrosis. The High Mobility Group Box 1 (HMGB1) protein is a Damage-Associated Molecular Pattern (DAMP) molecule that orchestrates key events in inflammation by switching among mutually exclusive redox states. Fully reduced HMGB1 (frHMGB1) supports immune cell recruitment and tissue regeneration, while the isoform containing a disulphide bond (dsHMGB1) promotes secretion of inflammatory mediators by immune cells. Although it has been suggested that the tissue itself determines the redox state of the extracellular space and of released HMGB1, the dynamics of HMGB1 oxidation in health and disease are unknown. In the present work, we analyzed the expression of HMGB1 redox isoforms in different inflammatory conditions in skeletal muscle, from acute injury to muscle wasting, in tumor microenvironment, in spleen, and in liver after drug intoxication. Our results reveal that the redox modulation of HMGB1 is tissue-specific, with high expression of dsHMGB1 in normal spleen and liver and very low in muscle, where it appears after acute damage. Similarly, dsHMGB1 is highly expressed in the tumor microenvironment while it is absent in cachectic muscles from the same tumor-bearing mice. These findings emphasize the accurate and dynamic regulation of HMGB1 redox state, with the presence of dsHMGB1 tightly associated with leukocyte infiltration. Accordingly, we identified circulating, infiltrating, and resident leukocytes as reservoirs and transporters of dsHMGB1 in tissue and tumor microenvironment, demonstrating that the redox state of HMGB1 is controlled at both tissue and cell levels. Overall, our data point out that HMGB1 oxidation is a timely and spatially regulated process in physiological and pathological conditions. This precise modulation might play key roles to finetune inflammatory and regenerative processes.


Subject(s)
HMGB1 Protein/metabolism , Animals , Cachexia/immunology , Cachexia/metabolism , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Disease Models, Animal , HMGB1 Protein/deficiency , HMGB1 Protein/immunology , Inflammation/immunology , Inflammation/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Liver/immunology , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/immunology , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Oxidation-Reduction , Spleen/immunology , Spleen/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/physiology
6.
J Craniofac Surg ; 27(3): 727-32, 2016 May.
Article in English | MEDLINE | ID: mdl-27092915

ABSTRACT

In the study, we assess a rapid prototyped scaffold composed of 30/70 hydroxyapatite (HA) and beta-tricalcium-phosphate (ß-TCP) loaded with human adipose-derived stem cells (hASCs) to determine cell proliferation, differentiation toward osteogenic lineage, adhesion and penetration on/into the scaffold.In this in vitro study, hASCs isolated from fat tissue discarded after plastic surgery were expanded, characterized, and then loaded onto the scaffold. Cells were tested for: viability assay (Alamar Blue at days 3, 7 and Live/Dead at day 32), differentiation index (alkaline phosphatase activity at day 14), scaffold adhesion (standard error of the mean analysis at days 5 and 18), and penetration (ground sections at day 32).All the hASC populations displayed stemness markers and the ability to differentiate toward adipogenic and osteogenic lineages.Cellular vitality increased between 3 and 7 days, and no inhibitory effect by HA/ß-TCP was observed. Under osteogenic stimuli, scaffold increased alkaline phosphatase activity of +243% compared with undifferentiated samples. Human adipose-derived stem cells adhered on HA/ß-TCP surface through citoplasmatic extensions that occupied the macropores and built networks among them. Human adipose derived stem cells were observed in the core of HA/ß-TCP. The current combination of hASCs and HA/ß-TCP scaffold provided encouraging results. If authors' data will be confirmed in preclinical models, the present engineering approach could represent an interesting tool in treating large bone defects.


Subject(s)
Adipocytes/cytology , Calcium Phosphates/pharmacology , Hydroxyapatites/pharmacology , Osteogenesis/drug effects , Stem Cells/cytology , Tissue Engineering/methods , Tissue Scaffolds , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Female , Humans , Middle Aged
7.
Differentiation ; 92(5): 291-297, 2016 12.
Article in English | MEDLINE | ID: mdl-27087652

ABSTRACT

Adipose-derived and bone marrow stem/stromal cells (ASCs and BMSCs) have been often compared for their application in regenerative medicine, and several factors sustaining their differentiation and efficacy have been investigated. 17 ß-estradiol (E2) has been reported to influence some functions of progenitor cells. Here we studied the effects of 10 and 100nM E2 on ASC and BMSC vitality, proliferation and differentiation towards osteogenic and adipogenic lineages. E2 did not modulate ASC and BMSC vitality and growth rate, while the hormone produced a pro-adipogenic effect on both mesenchymal stem/stromal cells (MSCs). In particular, the synergy between 7-day pre-treatment and 100nM E2 led to the most evident result, increasing lipid vacuoles formation in ASCs and BMSCs of +44% and +82%, respectively. Despite the fact that E2 did not alter collagen deposition of osteo-induced MSCs, we observed a different modulation of ASC and BMSC alkaline phosphatase (ALP) activity. Indeed, this osteogenic marker was always enhanced by 17 ß-estradiol in BMSCs, and 7-day pre-treatment with 100nM E2 increased it of about 70%. In contrast, E2 weakened ASC osteogenic potential, reducing their ALP activity of about 20%, with the most evident effect on ASCs isolated from pre-menopausal women (-30%). Finally, we identified an estrogen receptor α (ERα) variant of about 37kDa expressed in both MSCs. Interestingly, adipogenic stimuli drastically reduced its expression, while osteogenic ones mildly increased this isoform in BMSCs only. In conclusion, E2 positively affected the adipogenic process of both MSCs while it favored osteogenic induction in BMSCs only, and both mesenchymal progenitors expressed a novel 37kDa ER-α variant whose expression was modulated during differentiation.


Subject(s)
Adipogenesis/drug effects , Cell Differentiation/genetics , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Adipogenesis/genetics , Adipose Tissue/cytology , Adipose Tissue/drug effects , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Estradiol/administration & dosage , Estrogen Receptor alpha/genetics , Humans , Osteogenesis/genetics , Regenerative Medicine
8.
Stem Cell Res Ther ; 4(6): 148, 2013.
Article in English | MEDLINE | ID: mdl-24330736

ABSTRACT

INTRODUCTION: Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. METHODS: ASCs were isolated from interscapular subcutaneous adipose tissue (ScI) and buccal fat pads of six swine. Cells were characterized for their stemness and multipotent features. Moreover, their osteogenic ability when cultured on titanium disks and silicon carbide-plasma-enhanced chemical vapor-deposition fragments, and their growth in the presence of autologous and heterologous serum were also assessed. RESULTS: Independent of the harvesting site, no differences in proliferation, viability, and clonogenicity were observed among all the pASC populations. Furthermore, when induced toward osteogenic differentiation, both ScI- and BFP-pASCs showed an increase of collagen and calcified extracellular matrix (ECM) production, alkaline phosphatase activity, and osteonectin expression, indicating their ability to differentiate toward osteoblast-like cells. In addition, they differentiated toward adipocyte-like cells, and chondrogenic induced pASCs were able to increase glycosaminoglycans (GAGs) production over time. When cells were osteoinduced on synthetic biomaterials, they significantly increased the amount of calcified ECM compared with control cells; moreover, titanium showed the osteoinductive effect on pASCs, also without chemical stimuli. Finally, these cells grew nicely in 10% FBS, and no benefits were produced by substitution with swine serum. CONCLUSIONS: Swine buccal fat pad contains progenitor cells with mesenchymal features, and they also osteo-differentiate nicely in association with synthetic supports. We suggest that porcine BFP-ASCs may be applied in preclinical studies of periodontal and bone-defect regeneration.


Subject(s)
Adipose Tissue/cytology , Stem Cells/cytology , Subcutaneous Fat/cytology , Alkaline Phosphatase/metabolism , Animals , Biocompatible Materials/chemistry , Cell Differentiation , Cells, Cultured , Chondrogenesis , Collagen/metabolism , Drug Evaluation, Preclinical , Extracellular Matrix/metabolism , Glycosaminoglycans/metabolism , Mouth Diseases/surgery , Osteogenesis , Osteonectin/metabolism , Stem Cell Transplantation , Stem Cells/metabolism , Swine , Tissue Engineering
9.
Biores Open Access ; 2(2): 107-17, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23593563

ABSTRACT

Adipose-derived stem/stromal cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Since Bichat's fat pad is easily accessible for dentists and maxillo-facial surgeons, we compared the features of ASCs from Bichat's fat pad (BFP-ASCs) with human ASCs from subcutaneous adipose tissue (SC-ASCs). BFP-ASCs isolated from a small amount of tissue were characterized for their stemness and multidifferentiative ability. They showed an important clonogenic ability and the typical mesenchymal stem cell immunophenotype. Moreover, when properly induced, osteogenic and adipogenic differentiation markers, such as alkaline phosphatase activity, collagen deposition and lipid vacuoles formation, were promptly observed. Growth of both BFP-ASCs and SC-ASCs in the presence of human serum and their adhesion to natural and synthetic scaffolds were also assessed. Both types of ASCs adapted rapidly to human autologous or heterologous sera, increasing their proliferation rate compared to standard culture condition, and all the cells adhered finely to bone, periodontal ligament, collagen membrane, and polyglycol acid filaments that are present in the oral cavity or are commonly used in oral surgery. At last, we showed that amelogenin seems to be an early osteoinductive factor for BFP-ASCs, but not SC-ASCs, in vitro. We conclude that Bichat's fat pad contains BFP-ASCs with stemness features that are able to differentiate and adhere to biological supports and synthetic materials. They are also able to proliferate in the presence of human serum. For all these reasons we propose BFP-ASCs for future therapies of periodontal defects and bone regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...