Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biotechnol ; 19(1): 79, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31747926

ABSTRACT

BACKGROUND: Drought is one of the most harmful abiotic stresses for plants, leading to reduced productivity of several economically important crops and, consequently, considerable losses in the agricultural sector. When plants are exposed to stressful conditions, such as drought and high salinity, they modulate the expression of genes that lead to developmental, biochemical, and physiological changes, which help to overcome the deleterious effects of adverse circumstances. Thus, the search for new specific gene promoter sequences has proved to be a powerful biotechnological strategy to control the expression of key genes involved in water deprivation or multiple stress responses. RESULTS: This study aimed to identify and characterize the GmRD26 promoter (pGmRD26), which is involved in the regulation of plant responses to drought stress. The expression profile of the GmRD26 gene was investigated by qRT-PCR under normal and stress conditions in Williams 82, BR16 and Embrapa48 soybean-cultivars. Our data confirm that GmRD26 is induced under water deficit with different induction folds between analyzed cultivars, which display different genetic background and physiological behaviour under drought. The characterization of the GmRD26 promoter was performed under simulated stress conditions with abscisic acid (ABA), polyethylene glycol (PEG) and drought (air dry) on A. thaliana plants containing the complete construct of pGmRD26::GUS (2.054 bp) and two promoter modules, pGmRD26A::GUS (909 pb) and pGmRD26B::GUS (435 bp), controlling the expression of the ß-glucuronidase (uidA) gene. Analysis of GUS activity has demonstrated that pGmRD26 and pGmRD26A induce strong reporter gene expression, as the pAtRD29 positive control promoter under ABA and PEG treatment. CONCLUSIONS: The full-length promoter pGmRD26 and the pGmRD26A module provides an improved uidA transcription capacity when compared with the other promoter module, especially in response to polyethylene glycol and drought treatments. These data indicate that pGmRD26A may become a promising biotechnological asset with potential use in the development of modified drought-tolerant plants or other plants designed for stress responses.


Subject(s)
Abscisic Acid/pharmacology , Glycine max/genetics , Biotechnology/methods , Droughts , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Glycine max/drug effects , Stress, Physiological/genetics , Stress, Physiological/physiology
2.
J Exp Bot ; 68(15): 4309-4322, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28922767

ABSTRACT

Over the last decades, most information on the mechanisms underlying tolerance to drought has been gained by considering this stress as a single event that happens just once in the life of a plant, in contrast to what occurs under natural conditions where recurrent drought episodes are the rule. Here we explored mechanisms of drought tolerance in coffee (Coffea canephora) plants from a broader perspective, integrating key aspects of plant physiology and biochemistry. We show that plants exposed to multiple drought events displayed higher photosynthetic rates, which were largely accounted for by biochemical rather than diffusive or hydraulic factors, than those submitted to drought for the first time. Indeed, these plants displayed higher activities of RuBisCO and other enzymes associated with carbon and antioxidant metabolism. Acclimation to multiple drought events involved the expression of trainable genes related to drought tolerance and was also associated with a deep metabolite reprogramming with concordant alterations in central metabolic processes such as respiration and photorespiration. Our results demonstrate that plants exposed to multiple drought cycles can develop a differential acclimation that potentiates their defence mechanisms, allowing them to be kept in an 'alert state' to successfully cope with further drought events.


Subject(s)
Acclimatization , Coffea/physiology , Droughts , Photosynthesis , Brazil , Coffea/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...