Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 122(5): 1207-1218, 2017 May.
Article in English | MEDLINE | ID: mdl-28251734

ABSTRACT

AIMS: The objective of this work was to assess the antibacterial effect of 2-mercaptobenzothiazole (MBT), used as model-biocide, immobilized in a layered double hydroxide (LDH) structure, under different conditions of pH and salinity, envisaging possible applications of the system in active antifouling and anticorrosion coatings. METHODS AND RESULTS: Biological effects of MBT immobilized in LDH were assessed by monitoring bacterial bioluminescence of cell suspensions of either Allivibrio fischeri or a recombinant strain of Escherichia coli, as a proxy for bacterial activity. Salinity (1, 2 and 3% NaCl) and pH (4, 5, 6 and 7) of the suspension media were experimentally manipulated and biocide release tests were performed in parallel. The release profiles obtained by UV-visible spectrophotometry indicated a fast release of biocide from MBT@LDH, slightly enhanced in 3% NaCl and under alkaline conditions. However, biological effects were more pronounced at 1% NaCl and at neutral pH. CONCLUSIONS: The release and toxic effect of MBT immobilized in LDH is dependent on the concentration of solutes in the suspension medium. SIGNIFICANCE AND IMPACT OF THE STUDY: The results confirm LDH as a biologically compatible material with potential to be used for biocide delivery.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzothiazoles/pharmacology , Hydroxides/chemistry , Anti-Bacterial Agents/chemistry , Benzothiazoles/chemistry , Drug Compounding , Escherichia coli/drug effects , Hydrogen-Ion Concentration , Kinetics , Nanostructures/chemistry
2.
Phys Chem Chem Phys ; 19(8): 6113-6129, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28191580

ABSTRACT

Triazoles are well-known organic corrosion inhibitors of copper. 1H-1,2,3-Triazole and 1,2,4-triazole, two very simple molecules with the only difference being the positions of the nitrogen atoms in the triazole ring, were studied in this work as corrosion inhibitors of copper in 50 mM NaCl solution using a set of electrochemical and analytical techniques. The results of electrochemical tests indicate that 1H-1,2,3-triazole exhibited superior inhibitor properties but could not suppress anodic copper dissolution at moderate anodic potentials (>+300 mV SCE), while 1,2,4-triazole, although it exhibited higher anodic currents, suppressed anodic copper dissolution at very anodic potentials. Density functional theory calculations were also performed to interpret the measured data and trends observed in the electrochemical studies. The computational studies considered either the inhibitors isolated in the gaseous phase or adsorbed onto Cu(111) surface models. From the calculations, the mechanisms of the inhibitive effects of both triazoles were established and plausible mechanisms of formation of the protective films on the Cu surface were proposed. The results of this study hold positive implications for research in the areas of catalysis, and copper content control in water purification systems.

3.
Nanotechnology ; 24(41): 415502, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24045136

ABSTRACT

The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer.The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings.


Subject(s)
Nanostructures/chemistry , Silicon Dioxide/chemistry , Corrosion , Phenolphthalein/chemistry , Porosity , Protons , Surface Properties
4.
ACS Appl Mater Interfaces ; 2(11): 3011-22, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20942404

ABSTRACT

This work contributes to the development of new feedback-active anticorrosion systems. Inhibitor-doped hydroxyapatite microparticles (HAP) are used as reservoirs, storing corrosion inhibitor to be released on demand. Release of the entrapped inhibitor is triggered by redox reactions associated with the corrosion process. HAP were used as reservoirs for several inhibiting species: cerium(III), lanthanum(III), salicylaldoxime, and 8-hydroxyquinoline. These species are effective corrosion inhibitors for a 2024 aluminum alloy (AA2024), used here as a model metallic substrate. Dissolution of the microparticles and release of the inhibitor are triggered by local acidification resulting from the anodic half-reaction during corrosion of AA2024. Calculated values and experimentally measured local acidification over the aluminum anode (down to pH = 3.65) are presented. The anticorrosion properties of inhibitor-doped HAP were assessed using electrochemical impedance spectroscopy. The microparticles impregnated with the corrosion inhibitors were introduced into a hybrid silica-zirconia sol-gel film, acting as a thin protective coating for AA2024, an alloy used for aeronautical applications. The protective properties of the sol-gel films were improved by the addition of HAP, proving their applicability as submicrometer-sized reservoirs of corrosion inhibitors for active anticorrosion coatings.

5.
ACS Appl Mater Interfaces ; 2(5): 1528-35, 2010 May.
Article in English | MEDLINE | ID: mdl-20455547

ABSTRACT

The present work reports the synthesis of layered double hydroxides (LDHs) nanocontainers loaded with different corrosion inhibitors (vanadate, phosphate, and 2-mercaptobenzothiazolate) and the characterization of the resulting pigments by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The anticorrosion activity of these nanocontainers with respect to aluminum alloy AA2024 was investigated by electrochemical impedance spectroscopy (EIS). The bare metallic substrates were immersed in dispersions of nanocontainers in sodium chloride solution and tested to understand the inhibition mechanisms and efficiency. The nanocontainers were also incorporated into commercial coatings used for aeronautical applications to study the active corrosion protection properties in systems of industrial relevance. The results show that an enhancement of the active protection effect can be reached when nanocontainers loaded with different inhibitors are combined in the same protective coating system.


Subject(s)
Nanostructures/chemistry , Nanostructures/ultrastructure , Corrosion , Materials Testing
6.
ACS Appl Mater Interfaces ; 1(10): 2353-62, 2009 Oct.
Article in English | MEDLINE | ID: mdl-20355873

ABSTRACT

Zn-Al and Mg-Al layered double hydroxides (LDHs) loaded with quinaldate and 2-mercaptobenzothiazolate anions were synthesized via anion-exchange reaction. The resulting compounds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy. Spectrophotometric measurements demonstrated that the release of organic anions from these LDHs into the bulk solution is triggered by the presence of chloride anions, evidencing the anion-exchange nature of this process. The anticorrosion capabilities of LDHs loaded with organic inhibitors toward the AA2024 aluminum alloy were analyzed by electrochemical impedance spectroscopy. A significant reduction of the corrosion rate is observed when the LDH nanopigments are present in the corrosive media. The mechanism by which the inhibiting anions can be released from the LDHs underlines the versatility of these environmentally friendly structures and their potential application as nanocontainers in self-healing coatings.

7.
Int J Pharm ; 278(1): 181-6, 2004 Jun 18.
Article in English | MEDLINE | ID: mdl-15158960

ABSTRACT

Poly(methyl methacrylate) (PMMA) is used to fill the gap between the prosthesis and the surrounding bone in cemented arthroplasties. Biocompatibility problems related to bone cement application limit the clinical success of these cemented arthroplasties. Being the cement surface in close connection with the living bone, it is reasonable to assume that surface properties such as, surface composition and surface energy, will play a role in the biomaterial performance. X-ray photoelectron spectroscopy (XPS) analysis and surface energy studies were carried out during 4 months, in order to assess a possible correlation between aging time and surface changes. The aging of PMMA, in a biological model fluid, strongly influences the composition and wettability of the cement surface. These changes may be explained through the hydrolysis of PMMA ester groups and the subsequent hydrogen bonding. Although our study does not exactly reproduce the in vivo environment surrounding a prosthesis, it suggests that the changes in the composition and wettability of the surface may modulate the host response towards the implant, thus contributing to its loosening.


Subject(s)
Bone Cements/chemistry , Polymethyl Methacrylate/chemistry , Technology, Pharmaceutical/methods , Surface Properties
8.
Int J Pharm ; 241(1): 97-102, 2002 Jul 08.
Article in English | MEDLINE | ID: mdl-12086725

ABSTRACT

Prosthesis loosening is a major problem associated with the use of poly(methyl methacrylate) (PMMA) bone cement that may be related to a peri-implant vacuolisation commonly observed at bone-cement interface. Methyl methacrylate (MMA) monomer may be one of the cement components partly responsible for the mentioned vacuolisation due to a cytotoxic effect associated to this compound. Alcoholism has been related to bone necrosis in predisposed individuals. Furthermore, ethanol has been shown to clean material with adherent cement debris during cleaning procedure in laboratory. Consequently, we have decided to study whether ethanol will also be related to an increased liberation of MMA from the polymer matrix. 'In vitro' release studies using PMMA plates were conducted to access the role of ethanol on the liberation of the monomer. Contact angle measurements and surface tension estimation were also carried out in order to find a possible effect of ethanol on surface cement properties. Results suggest that ethanol, even in small quantities, enhances the leaching of the monomer from the polymer matrix, but does not considerably change the wettability properties of the cement surface.


Subject(s)
Acrylic Resins/chemistry , Bone Cements/chemistry , Ethanol/chemistry , Algorithms , Buffers , Half-Life , Models, Theoretical , Phosphates/chemistry , Polymethyl Methacrylate/chemistry , Solubility , Solvents , Surface Tension , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...