Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11176, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750071

ABSTRACT

Multiple Myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of plasma cells within the bone marrow. Diagnosing MM presents considerable challenges, involving the identification of plasma cells in cytology examinations on hematological slides. At present, this is still a time-consuming manual task and has high labor costs. These challenges have adverse implications, which rely heavily on medical professionals' expertise and experience. To tackle these challenges, we present an investigation using Artificial Intelligence, specifically a Machine Learning analysis of hematological slides with a Deep Neural Network (DNN), to support specialists during the process of diagnosing MM. In this sense, the contribution of this study is twofold: in addition to the trained model to diagnose MM, we also make available to the community a fully-curated hematological slide dataset with thousands of images of plasma cells. Taken together, the setup we established here is a framework that researchers and hospitals with limited resources can promptly use. Our contributions provide practical results that have been directly applied in the public health system in Brazil. Given the open-source nature of the project, we anticipate it will be used and extended to diagnose other malignancies.


Subject(s)
Multiple Myeloma , Humans , Bone Marrow/pathology , Brazil , Hematology/methods , Machine Learning , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Neural Networks, Computer , Plasma Cells/pathology
2.
Sci Rep ; 13(1): 9546, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308572

ABSTRACT

Blood coagulation is a vital process for humans and other species. Following an injury to a blood vessel, a cascade of molecular signals is transmitted, inhibiting and activating more than a dozen coagulation factors and resulting in the formation of a fibrin clot that ceases the bleeding. In this process, the Coagulation factor V (FV) is a master regulator, coordinating critical steps of this process. Mutations to this factor result in spontaneous bleeding episodes and prolonged hemorrhage after trauma or surgery. Although the role of FV is well characterized, it is unclear how single-point mutations affect its structure. In this study, to understand the effect of mutations, we created a detailed network map of this protein, where each node is a residue, and two residues are connected if they are in close proximity in the three-dimensional structure. Overall, we analyzed 63 point-mutations from patients and identified common patterns underlying FV deficient phenotypes. We used structural and evolutionary patterns as input to machine learning algorithms to anticipate the effects of mutations and anticipated FV-deficiency with fair accuracy. Together, our results demonstrate how clinical features, genetic data and in silico analysis are converging to enhance treatment and diagnosis of coagulation disorders.


Subject(s)
Factor V , Point Mutation , Humans , Mutation , Algorithms , Biological Evolution
3.
Front Bioinform ; 3: 1152039, 2023.
Article in English | MEDLINE | ID: mdl-37235045

ABSTRACT

Introduction: Blood coagulation is an essential process to cease bleeding in humans and other species. This mechanism is characterized by a molecular cascade of more than a dozen components activated after an injury to a blood vessel. In this process, the coagulation factor VIII (FVIII) is a master regulator, enhancing the activity of other components by thousands of times. In this sense, it is unsurprising that even single amino acid substitutions result in hemophilia A (HA)-a disease marked by uncontrolled bleeding and that leaves patients at permanent risk of hemorrhagic complications. Methods: Despite recent advances in the diagnosis and treatment of HA, the precise role of each residue of the FVIII protein remains unclear. In this study, we developed a graph-based machine learning framework that explores in detail the network formed by the residues of the FVIII protein, where each residue is a node, and two nodes are connected if they are in close proximity on the FVIII 3D structure. Results: Using this system, we identified the properties that lead to severe and mild forms of the disease. Finally, in an effort to advance the development of novel recombinant therapeutic FVIII proteins, we adapted our framework to predict the activity and expression of more than 300 in vitro alanine mutations, once more observing a close agreement between the in silico and the in vitro results. Discussion: Together, the results derived from this study demonstrate how graph-based classifiers can leverage the diagnostic and treatment of a rare disease.

4.
Bioinform Adv ; 3(1): vbac098, 2023.
Article in English | MEDLINE | ID: mdl-36698764

ABSTRACT

Summary: Blood coagulation is a vital process for humans and other species. Following an injury to a blood vessel, a cascade of molecular signals is transmitted, inhibiting and activating more than a dozen coagulation factors and resulting in the formation of a fibrin clot that ceases the bleeding. In this process, antithrombin (AT), encoded by the SERPINC1 gene is a key player regulating the clotting activity and ensuring that it stops at the right time. In this sense, mutations to this factor often result in thrombosis-the excessive coagulation that leads to the potentially fatal formation of blood clots that obstruct veins. Although this process is well known, it is still unclear why even single residue substitutions to AT lead to drastically different phenotypes. In this study, to understand the effect of mutations throughout the AT structure, we created a detailed network map of this protein, where each node is an amino acid, and two amino acids are connected if they are in close proximity in the three-dimensional structure. With this simple and intuitive representation and a machine-learning framework trained using genetic information from more than 130 patients, we found that different types of thrombosis have emerging patterns that are readily identifiable. Together, these results demonstrate how clinical features, genetic data and in silico analysis are converging to enhance the diagnosis and treatment of coagulation disorders. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

SELECTION OF CITATIONS
SEARCH DETAIL
...