Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 62(17): 2530-2540, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37540799

ABSTRACT

We investigate the physicochemical effects of pyroglutamination on the QHALTSV-NH2 peptide, a segment of cytosolic helix 8 of the human C-X-C chemokine G-protein-coupled receptor type 4 (CXCR4). This modification, resulting from the spontaneous conversion of glutamine to pyroglutamic acid, has significant impacts on the physicochemical features of peptides. Using a static approach, we compared the transformation in different conditions and experimentally found that the rate of product formation increases with temperature, underscoring the need for caution during laboratory experiments to prevent glutamine cyclization. Circular dichroism experiments revealed that the QHALTSV-NH2 segment plays a minor role in the structuration of H8 CXCR4; however, its pyroglutaminated analogue interacts differently with its chemical environment, showing increased susceptibility to solvent variations compared to the native form. The pyroglutaminated analogue exhibits altered behavior when interacting with lipid models, suggesting a significant impact on its interaction with cell membranes. A unique combination of atomic force microscopy and infrared nanospectroscopy revealed that pyroglutamination affects supramolecular self-assembly, leading to highly packed molecular arrangements and a crystalline structure. Moreover, the presence of pyroglumatic acid has been found to favor the formation of amyloidogenic aggregates. Our findings emphasize the importance of considering pyroglutamination in peptide synthesis and proteomics and its potential significance in amyloidosis.


Subject(s)
Amyloidosis , Glutamine , Humans , Peptides , Chemokines/chemistry , Cell Membrane/metabolism , Circular Dichroism , Receptors, CXCR4/metabolism
2.
Amino Acids ; 51(2): 273-282, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30298243

ABSTRACT

We compared the synthesis and structural/conformational details of the (66-97) segments of the second transmembrane helix of AT1, MAS and B2, all of which belong to the class of G-protein-coupled receptors (GPCR). Step-by-step monitoring of the coupling reactions during the growth of these transmembrane peptides revealed that the increase in the level of difficulty started at the 6-10 regions of the sequence. Possibly due to their long and hydrophobic sequences, the final estimated synthesis yields decreased progressively by up to 20-25%. Analytical high pressure liquid chromatography showed that the hydrophobicity indexes of each TM-8, -16, -24 and -32 segments correlated linearly with their retention time. Microscopic measurements of peptide-resin beads indicated that, in general, dichloromethane and dimethylsulfoxide were the best solvents for solvating resin beads in the initial and final stages of the synthesis, respectively. Results from electron paramagnetic resonance experiments with Toac (2, 2, 6, 6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) spin-labeled peptide resins revealed that the level of peptide chain mobility throughout the polymer network was in agreement with their swelling data measured in different solvents. Initial results regarding conformational features determined by circular dichroism (CD) spectra revealed typical α-helicoidally structures for MAS and B2 TM32 fragments when in more than roughly 30% (v/v) trifluoroethanol (TFE). In contrast, the AT1-TM32 segment revealed CD spectra, more representatives of a mixture of other secondary helical conformers, regardless of the amount of TFE. These findings observed in different aspects of these receptors' fragments support further investigations of GPCR-type macromolecules.


Subject(s)
Peptide Fragments/chemistry , Receptors, G-Protein-Coupled/chemistry , Amino Acid Sequence , Chromatography, High Pressure Liquid , Circular Dichroism , Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy , Hydrophobic and Hydrophilic Interactions , Microspheres , Peptide Fragments/chemical synthesis , Protein Conformation , Solid-Phase Synthesis Techniques , Solvents , Spin Labels , Trifluoroethanol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...