Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 90(2): e0225023, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38299816

ABSTRACT

Burkholderia cepacia complex bacteria have emerged as opportunistic pathogens in patients with cystic fibrosis and immunocompromised individuals, causing life-threatening infections. Because of the relevance of these microorganisms, genetic manipulation is crucial for explaining the genetic mechanisms leading to pathogenesis. Despite the availability of allelic exchange tools to obtain unmarked gene deletions in Burkholderia, these require a step of merodiploid formation and another of merodiploid resolution through two independent homologous recombination events, making the procedure long-lasting. The CRISPR/Cas9-based system could ease this constraint, as only one step is needed for allelic exchange. Here, we report the modification of a two-plasmid system (pCasPA and pACRISPR) for genome editing in Burkholderia multivorans. Several modifications were implemented, including selection marker replacement, the optimization of araB promoter induction for the expression of Cas9 and λ-Red system encoding genes, and the establishment of plasmid curing procedures based on the sacB gene or growth at a sub-optimal temperature of 18°C-20°C with serial passages. We have shown the efficiency of this CRISPR/Cas9 method in the precise and unmarked deletion of different genes (rpfR, bceF, cepR, and bcsB) from two strains of B. multivorans, as well as its usefulness in the targeted insertion of the gfp gene encoding the green fluorescence protein into a precise genome location. As pCasPA was successfully introduced in other Burkholderia cepacia complex species, this study opens up the possibility of using CRISPR/Cas9-based systems as efficient tools for genome editing in these species, allowing faster and more cost-effective genetic manipulation.IMPORTANCEBurkholderia encompasses different species of bacteria, some of them pathogenic to animals and plants, but others are beneficial by promoting plant growth through symbiosis or as biocontrol agents. Among these species, Burkholderia multivorans, a member of the Burkholderia cepacia complex, is one of the predominant species infecting the lungs of cystic fibrosis patients, often causing respiratory chronic infections that are very difficult to eradicate. Since the B. multivorans species is understudied, we have developed a genetic tool based on the CRISPR/Cas9 system to delete genes efficiently from the genomes of these strains. We could also insert foreign genes that can be precisely placed in a chosen genomic region. This method, faster than other conventional strategies based on allelic exchange, will have a major contribution to understanding the virulence mechanisms in B. multivorans, but it can likely be extended to other Burkholderia species.


Subject(s)
Burkholderia Infections , Burkholderia cepacia complex , Burkholderia , Cystic Fibrosis , Animals , Humans , CRISPR-Cas Systems , Burkholderia Infections/microbiology , Cystic Fibrosis/microbiology , Gene Editing , Burkholderia/genetics , Burkholderia cepacia complex/genetics , Genomics
2.
Biomedicines ; 9(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34944603

ABSTRACT

Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain a life threat to cystic fibrosis (CF) patients, due to the faster lung function decline and the absence of effective eradication strategies. Immunotherapies are regarded as an attractive alternative to control and reduce the damages caused by these infections. In this work, we report the cloning and functional characterization of the OmpA-like BCAL2645 protein, previously identified and found to be immunoreactive against sera from CF patients with a record of Bcc infections. The BCAL2645 protein is shown to play a role in biofilm formation, adherence to mucins and invasion of human lung epithelial cells. The expression of the BCAL2645 protein was found to be increased in culture medium, mimicking the lungs of CF patients and microaerophilic conditions characteristic of the CF lung. Moreover, a polyclonal antibody raised against BCAL2645 was found to inhibit, by about 75 and 85%, the ability of B. cenocepacia K56-2 to bind and invade in vitro CFBE41o- human bronchial epithelial cells. These results highlight the potential of anti-BCAL2645 antibodies for the development of passive immunization therapies to protect CF patients against Bcc infections.

3.
Appl Environ Microbiol ; 87(14): e0036921, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33931418

ABSTRACT

Burkholderia cepacia complex bacteria comprise opportunistic pathogens causing chronic respiratory infections in cystic fibrosis (CF) patients. These microorganisms produce an exopolysaccharide named cepacian, which is considered a virulence determinant. To find genes implicated in the regulation of cepacian biosynthesis, we characterized an evolved nonmucoid variant (17616nmv) derived from the ancestor, Burkholderia multivorans ATCC 17616, after prolonged stationary phase. Lack of cepacian biosynthesis was correlated with downregulation of the expression of bce genes implicated in its biosynthesis. Furthermore, genome sequencing of the variant identified the transposition of the mobile element IS406 upstream of the coding sequence of an hns-like gene (Bmul_0158) encoding a histone-like nucleoid structuring (H-NS) protein, a known global transcriptional repressor. This insertion sequence (IS) element upregulated the expression of Bmul_0158 by 4-fold. Transcriptome analysis identified the global effects of this mutation on gene expression, with major changes in genes implicated in motility, pilus synthesis, type VI secretion, and chromosome-associated functions. Concomitant with these differences, the nonmucoid variant displays reduced adherence to a CF lung bronchial cell line and reduced surface hydrophobicity and forms smaller cellular aggregates but has an increase in swimming and swarming motilities. Finally, analysis of the GC content of the upstream region of differentially expressed genes led to the identification of various genomic regions, possibly acquired by horizontal gene transfer, which were transcriptionally repressed by the increased expression of the Bmul_0158 gene in the 17616nmv strain. Taken together, the results revealed a significant role for this H-NS protein in the regulation of B. multivorans persistence- and virulence-associated genes. IMPORTANCE Members of the histone-like nucleoid structuring (H-NS) family of proteins, present in many bacteria, are important global regulators of gene expression. Many of the regulated genes were acquired horizontally and include pathogenicity islands and prophages, among others. Additionally, H-NS can play a structural role by bridging and compacting DNA, fulfilling a crucial role in cell physiology. Several virulence phenotypes have been frequently identified in several bacteria as dependent on H-NS activity. Here, we describe an H-NS-like protein of the opportunistic pathogen Burkholderia multivorans, a species commonly infecting the respiratory tract of cystic fibrosis patients. Our results indicate that this protein is involved in regulating virulence traits such as exopolysaccharide biosynthesis, adhesion to biotic surfaces, cellular aggregation, and motility. Furthermore, this H-NS-like protein is one out of eight orthologs present in the B. multivorans ATCC 17616 genome, posing relevant questions to be investigated on how these proteins coordinate the expression of virulence traits.


Subject(s)
Bacterial Proteins/genetics , Burkholderia/genetics , Burkholderia/pathogenicity , Virulence/genetics , Bacterial Adhesion , Burkholderia/physiology , Cell Aggregation , Cell Line , Gene Expression Regulation, Bacterial , Genes, Bacterial , Genome, Bacterial , Histones , Humans , Hydrophobic and Hydrophilic Interactions , Phenotype , Polysaccharides, Bacterial/biosynthesis
4.
Adv Appl Microbiol ; 107: 113-140, 2019.
Article in English | MEDLINE | ID: mdl-31128746

ABSTRACT

Bacteria produce a vast range of exopolysaccharides (EPSs) to thrive in diverse environmental niches and often display a mucoid phenotype in solid media. One such exopolysaccharide, cepacian, is produced by bacteria of the genus Burkholderia and is of interest due to its role in pathogenesis associated with lung infections in cystic fibrosis (CF) patients. Cepacian is a repeat-unit polymer that has been implicated in biofilm formation, immune system evasion, interaction with host cells, resistance against antimicrobials, and virulence. Its biosynthesis proceeds through the Wzy-dependent polymerization and secretion mechanism, which requires a multienzymatic complex. Key aspects of its structure, genetic organization, and the regulatory network involved in mucoid switch and regulation of cepacian biosynthesis at transcriptional and posttranscriptional levels are reviewed. It is also evaluated the importance of cepacian biosynthesis/regulation key players as evolutionary targets of selection and highlighted the complexity of the regulatory network, which allows cells to coordinate the expression of metabolic functions to the ones of the cell wall, in order to be successful in ever changing environments, including in the interaction with host cells.


Subject(s)
Biological Variation, Population , Burkholderia/metabolism , Polysaccharides, Bacterial/biosynthesis , Virulence Factors/biosynthesis , Biosynthetic Pathways/genetics , Burkholderia/pathogenicity , Gene Expression Regulation, Bacterial , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/genetics , Virulence Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...