Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Materials (Basel) ; 17(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399069

ABSTRACT

Blast furnace dust waste (BFDW) proved efficient as a photocatalyst for the decolorization of methylene blue (MB) dye in water. Structural analysis unequivocally identified α-Fe2O3 as the predominant phase, constituting approximately 92%, with a porous surface showcasing unique 10-30 nm agglomerated nanoparticles. Chemical and thermal analyses indicated surface-bound water and carbonate molecules, with the main phase's thermal stability up to 900 °C. Electrical conductivity analysis revealed charge transfer resistance values of 616.4 Ω and electrode resistance of 47.8 Ω. The Mott-Schottky analysis identified α-Fe2O3 as an n-type semiconductor with a flat band potential of 0.181 V vs. Ag/AgCl and a donor density of 1.45 × 1015 cm-3. The 2.2 eV optical bandgap and luminescence stem from α-Fe2O3 and weak ferromagnetism arises from structural defects and surface effects. With a 74% photocatalytic efficiency, stable through three photodegradation cycles, BFDW outperforms comparable waste materials in MB degradation mediated by visible light. The elemental trapping experiment exposed hydroxyl radicals (OH•) and superoxide anions (O2-•) as the primary species in the photodegradation process. Consequently, iron oxide-based BFDW emerges as an environmentally friendly alternative for wastewater treatment, underscoring the pivotal role of its unique physical properties in the photocatalytic process.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985876

ABSTRACT

Herein, we carefully investigated the Fe3+ doping effects on the structure and electron distribution of Cr2O3 nanoparticles using X-ray diffraction analysis (XRD), maximum entropy method (MEM), and density functional theory (DFT) calculations. We showed that increasing the Fe doping induces an enlargement in the axial ratio of c/a, which is associated with an anisotropic expansion of the unit cell. We found that as Fe3+ replaces Cr in the Cr2O3 lattice, it caused a higher interaction between the metal 3d states and the oxygen 2p states, which led to a slight increase in the Cr/Fe-O1 bond length followed by an opposite effect for the Cr/Fe-O2 bonds. Our results also suggest that the excitations characterize a well-localized bandgap region from occupied Cr d to unoccupied Fe d states. The Cr2O3 and Fe-doped Cr2O3 nanoparticles behave as Mott-Hubbard insulators due to their band gap being in the d-d gap, and Cr 3d orbitals dominate the conduction band. These findings suggest that the magnitude and the character of the electronic density near the O atom bonds in Cr2O3 nanoparticles are modulated by the Cr-Cr distances until its stabilization at the induced quasi-equilibrium of the Cr2O3 lattice when the Fe3+ doping values reaches the saturation level range.

3.
Microsc Res Tech ; 86(6): 731-741, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36974978

ABSTRACT

We have investigated the evolution of the structure and surface morphology of n-ZnO/p-ZnO homojunctions and n-ZnO/p-NiO heterojunctions transparent structures deposited by radio frequency-sputtering on quartz (Q)/ITO substrates. X-ray diffraction (XRD) analysis of the as-deposited and annealed ZnO, n-ZnO/p-NiO/Q/ITO, and n-ZnO/p-ZnO/Q/ITO thin films showed that ZnO had a wurtzite hexagonal structure and (002) preferred growth direction. The annealing temperature played a key role in improving the crystalline structure of the films, as evidenced by the changes in the intensity and position of the XRD (002) peak. Morphological analysis revealed that the roughness of the film varies with increasing annealing temperature. Particle size dictates the vertical growth of p-ZnO homojunctions, while particle shape dictated the p-NiO heterojunctions growth. Fractal analysis showed that p-ZnO homojunctions have similar spatial complexity, surface percolation, and topographical uniformity and are dominated by low dominant frequencies. Moreover, a robust multifractal character was observed, where n-ZnO/p-ZnO homojunctions follow similar vertical growth dynamics, which differed from the n-ZnO/p-NiO heterojunctions growth dynamics. These results prove that annealing temperature plays a key role in the n-ZnO/p-ZnO homojunctions and n-ZnO/p-NiO heterojunctions structure, surface morphology, and vertical growth dynamics.

4.
Materials (Basel) ; 15(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36363016

ABSTRACT

Iron niobates, pure and substituted with copper (Fe1-xCuxNbO4 with x = 0-0.15), were prepared by the solid-state method and characterized by X-ray diffraction, Raman spectroscopy, and magnetic measurements. The results of the structural characterizations revealed the high solubility of Cu ions in the structure and better structural stability compared to the pure sample. The analysis of the magnetic properties showed that the antiferromagnetic-ferromagnetic transition was caused by the insertion of Cu2+ ions into the FeNbO4 structure. The pure FeNbO4 structure presented an antiferromagnetic ordering state, with a Néel temperature of approximately 36.81K. The increase in substitution promoted a change in the magnetic ordering, with the state passing to a weak ferromagnetic order with a transition temperature (Tc) higher than the ambient temperature. The origin of the ferromagnetic ordering could be attributed to the increase in super-exchange interactions between Fe/Cu ions in the Cu2+-O-Fe3+ chains and the formation of bound magnetic polarons in the oxygen vacancies.

5.
Materials (Basel) ; 15(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36233887

ABSTRACT

FeSbO4 powder was prepared using the solid-state reaction method in this work. Afterward, the dense and porous ceramics were obtained by sintering the pressed powder calcined at temperatures of 900 and 1000 °C for 4 h. Rietveld profile analysis of the X-ray powder diffraction data showed that FeSbO4 adopts the trirutile-type structure (space group P42/mnm, with a ≅ 4.63 Å and c ≅ 9.23 Å). SEM images showed that the powder calcined at 900 °C after being sintered at 1200 °C resulted in ceramics of higher crystallinity, larger grains, and consequently, low porosity. The dielectric properties were measured in the frequency range of 10−1 Hz−1 MHz as a function of temperature (25−250 °C). The real (σ') and imaginary (σ″) parts of the complex conductivity increase with rising annealing temperature for both samples. The real conductivity in the AC region for 𝑓 = 100 kHz was 1.59×10−6 S·cm−1 and 7.04×10−7 S·cm−1 for the ceramic samples obtained from the powder calcined at 900 (C-900) and 1000 °C (C-1000), respectively. Furthermore, the dielectric constants (k') measured at room temperature and f=100 kHz were 13.77 (C-900) and 6.27 (C-1000), while the activation energies of the grain region were Ea = 0.53 eV and Ea = 0.49 eV, respectively. Similar activation energy (Ea = 0.52 eV and 0.49 eV) was also obtained by the brick-layer model and confirmed by the adjustment of activation energy by DC measurements which indicated an absence of the porosity influence on the parameter. Additionally, loss factor values were obtained to be equal to 3.8 (C-900) and 5.99 (C-1000) for measurements performed at 100 Hz, suggesting a contribution of the conductivity originated from the combination or accommodation of the pores in the grain boundary region. Our results prove that the microstructural factors that play a critical role in the electrical and dielectric properties are the average grain size and the porosity interspersed with the grain boundary region.

6.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36014752

ABSTRACT

ZnO nanocrystals with three different morphologies have been synthesized via a simple sol-gel-based method using Brosimum parinarioides (bitter Amapá) and Parahancornia amapa (sweet Amapá) latex as chelating agents. X-ray diffraction (XRD) and electron diffraction patterns (SAED) patterns showed the ZnO nanocrystals were a pure hexagonal wurtzite phase of ZnO. XRD-based spherical harmonics predictions and HRTEM images depicted that the nanocrystallites constitute pitanga-like (~15.8 nm), teetotum-like (~16.8 nm), and cambuci-like (~22.2 nm) shapes for the samples synthesized using bitter Amapá, sweet Amapá, and bitter/sweet Amapá chelating agent, respectively. The band gap luminescence was observed at ~2.67-2.79 eV along with several structural defect-related, blue emissions at 468-474 nm (VO, VZn, Zni), green emissions positioned at 513.89-515.89 (h-VO+), and orange emission at 600.78 nm (VO+-VO++). The best MB dye removal efficiency (85%) was mainly ascribed to the unique shape and oxygen vacancy defects found in the teetotum-like ZnO nanocrystals. Thus, the bitter Amapá and sweet Amapá latex are effective chelating agents for synthesizing distinctive-shaped ZnO nanocrystals with highly defective and remarkable photocatalytic activity.

7.
Sci Rep ; 12(1): 12002, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35835814

ABSTRACT

In this study, we investigated the morphology of synthesized Cu/Ni nanoparticles in trace of carbon sources by the co-deposition process of RF sputtering and RF-PECVD methods and localized surface plasmon resonance of CO gas sensing of Cu/Ni nanoparticles. The surface morphology was studied by analyzing 3D micrographs of atomic force microscopy using image processing techniques and fractal/multifractal analyses. The MountainsMap® Premium software with the two-way ANOVA (Variance analysis) and least-significant differences tests were used for statistical analysis. The surface nano-patterns have a local and global particular distribution. Experimental and simulated Rutherford backscattering spectra confirm the quality of nanoparticles. Then, prepared samples were exposed to CO gas flue to study their gas sensor application using the localized surface plasmon resonance method. Increasing the Ni layer over Cu one shows an interesting result in both morphology and gas sensing sides. Advanced stereometric analyses for the surface topography of thin films in conjunction with Rutherford backscattering spectrometry and Spectroscopic analysis make a unique study in the field.

8.
Microsc Res Tech ; 85(7): 2526-2536, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35312128

ABSTRACT

In this study, açaí-loaded kefir microbial films obtained in solutions containing demerara sugar, a low-cost and relatively organic sugar, were prepared. Environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM), stereometric and multifractal analyses were applied to study the influence of the concentration of açaí over the surface morphology as well as its multifractal nature. The ESEM and AFM images showed that low concentrations of acai berry form surface covered by bacteria, while higher concentrations promote yeast growth. The autocorrelation function suggested that the degree of surface anisotropy changes as the concentration of açaí increases, while the Minkowski Functionals confirmed that the sample with the highest content has a different morphology than the samples containing 10-40 ml. The multifractal analysis revealed that the surfaces have a strong multifractal behavior, where the multifractal singularity strength was higher in the sample containing the highest concentration of açaí. The sample with the highest concentration was then mapped to have a greater vertical growth of its spatial patterns. These results prove that image analysis using mathematical tools can be very useful for the characterization of biological-based systems for application in the biomedicine field. We characterized the micromorphology of the 3D surface of the kefir biofilms associated with Acai extract. The 3D surface analysis of the samples was performed using by environmental scanning electron microscope and atomic force microscopy. We determined the multifractal and Minkowski Functionals of the analyzed samples.


Subject(s)
Kefir , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Sugars , Surface Properties
9.
Inorg Chem ; 60(7): 4475-4496, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33710867

ABSTRACT

Defect influences on the photoactivity of ZnO nanoparticles prepared by a powdered coconut water (ACP) assisted synthesis have been studied. The crystalline phase and morphology of ZnO nanoparticles were effectively controlled by adjusting the calcination temperature (400-700 °C). An induced transition of hybrid Zn5(CO3)2(OH)6/ZnO nanoparticles to single-phase ZnO nanoparticles was obtained at 480 °C. The morphological analysis revealed a formation of ZnO nanoparticles with semispherical (∼6.5 nm)- and rod-like (∼96 nm) shapes when the calcination temperatures were 400 and 700 °C, respectively. Photoluminescence characterizations revealed several defects types in the samples with VZn and VO+ being in the self-assembly of semispherical- and rod-like ZnO nanoparticles. The photocatalytic activity of the ZnO nanoparticles was examined by assessing the degradation of methylene blue in an aqueous solution under low-intensity visible-light irradiation (∼3 W m-2). The results point toward the self-assembly of semispherical- and rod-like ZnO nanoparticles that had significantly better photocatalytic activity (∼31%) in comparison to that of spherical-agglomerated- or near-spherical-like species within 120 min of irradiation. The possible photocatalytic mechanism is discussed in detail, and the morphology-driven intrinsic [VZn+VO+] defects are proposed to be among the active sites of the ZnO nanoparticles enhancing the photocatalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...