Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Inst Mech Eng H ; : 9544119241237356, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38523483

ABSTRACT

Stress urinary incontinence often results from pelvic support structures' weakening or damage. This dysfunction is related to direct injury of the pelvic organ's muscular, ligamentous or connective tissue structures due to aging, vaginal delivery or increase of the intra-abdominal pressure, for example, defecation or due to obesity. Mechanical changes alter the soft tissues' microstructural composition and therefore may affect their biomechanical properties. This study focuses on adapting an inverse finite element analysis to estimate the in vivo bladder's biomechanical properties of two groups of women (continent group (G1) and incontinent group (G2)). These properties were estimated based on MRI, by comparing measurement of the bladder neck's displacements during dynamic MRI acquired in Valsalva maneuver with the results from inverse analysis. For G2, the intra-abdominal pressure was adjusted after applying a 95% impairment to the supporting structures. The material parameters were estimated for the two groups using the Ogden hyperelastic constitutive model. Finite element analysis results showed that the bladder tissue of women with stress urinary incontinence have the highest stiffness (α1 = 0.202 MPa and µ1 = 7.720 MPa) approximately 47% higher when compared to continent women. According to the bladder neck's supero-inferior displacement measured in the MRI, the intra-abdominal pressure values were adjusted for the G2, presenting a difference of 20% (4.0 kPa for G1 and 5.0 kPa for G2). The knowledge of the pelvic structures' biomechanical properties, through this non-invasive methodology, can be crucial in the choice of the synthetic mesh to treat dysfunction when considering personalized options.

2.
Materials (Basel) ; 16(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176428

ABSTRACT

Additive manufacturing technologies have numerous advantages over conventional technologies; nevertheless, their production process can lead to high residual stresses and distortions in the produced parts. The use of numerical simulation models is presented as a solution to predict the deformations and residual stresses resulting from the printing process. This study aimed to predict the tensions and distortions imposed in the gear repair process by directed energy deposition (DED). First, the case study proposed by National Institute of Standards and Technology (NIST) was analyzed to validate the model and the numerically obtained results. Subsequently, a parametric study of the influence of some of the parameters of DED technology was carried out. The results obtained for the validation of the NIST benchmark bridge model were in agreement with the results obtained experimentally. In turn, the results obtained from the parametric study were almost always in line with what is theoretically expected; however, some results were not very clear and consistent. The results obtained help to clarify the influence of certain printing parameters. The proposed model allowed accounting for the effect of residual stresses in calculating the stresses resulting from gear loading, which are essential data for fatigue analysis. Modeling and simulating a deposition process can be challenging due to several factors, including calibrating the model, managing the computational cost, accounting for boundary conditions, and accurately representing material properties. This paper aimed to carefully address these parameters in two case studies, towards reliable simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...