Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Expert Opin Drug Discov ; 19(6): 741-753, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715393

ABSTRACT

INTRODUCTION: Benznidazole, the drug of choice for treating Chagas Disease (CD), has significant limitations, such as poor cure efficacy, mainly in the chronic phase of CD, association with side effects, and parasite resistance. Understanding parasite resistance to benznidazole is crucial for developing new drugs to treat CD. AREAS COVERED: Here, the authors review the current understanding of the molecular basis of benznidazole resistance. Furthermore, they discuss the state-of-the-art methods and critical outcomes employed to evaluate the efficacy of potential drugs against T. cruzi, aiming to select better compounds likely to succeed in the clinic. Finally, the authors describe the different strategies employed to overcome resistance to benznidazole and find effective new treatments for CD. EXPERT OPINION: Resistance to benznidazole is a complex phenomenon that occurs naturally among T. cruzi strains. The combination of compounds that inhibit different metabolic pathways of the parasite is an important strategy for developing a new chemotherapeutic protocol.


Subject(s)
Chagas Disease , Drug Discovery , Drug Resistance , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Nitroimidazoles/pharmacology , Chagas Disease/drug therapy , Chagas Disease/parasitology , Trypanocidal Agents/pharmacology , Humans , Animals , Drug Discovery/methods , Drug Development
2.
J Chem Inf Model ; 64(2): 393-411, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38194508

ABSTRACT

Around three billion people are at risk of infection by the dengue virus (DENV) and potentially other flaviviruses. Worldwide outbreaks of DENV, Zika virus (ZIKV), and yellow fever virus (YFV), the lack of antiviral drugs, and limitations on vaccine usage emphasize the need for novel antiviral research. Here, we propose a consensus virtual screening approach to discover potential protease inhibitors (NS3pro) against different flavivirus. We employed an in silico combination of a hologram quantitative structure-activity relationship (HQSAR) model and molecular docking on characterized binding sites followed by molecular dynamics (MD) simulations, which filtered a data set of 7.6 million compounds to 2,775 hits. Lastly, docking and MD simulations selected six final potential NS3pro inhibitors with stable interactions along the simulations. Five compounds had their antiviral activity confirmed against ZIKV, YFV, DENV-2, and DENV-3 (ranging from 4.21 ± 0.14 to 37.51 ± 0.8 µM), displaying aggregator characteristics for enzymatic inhibition against ZIKV NS3pro (ranging from 28 ± 7 to 70 ± 7 µM). Taken together, the compounds identified in this approach may contribute to the design of promising candidates to treat different flavivirus infections.


Subject(s)
Flavivirus , Pyrimidines , Zika Virus Infection , Zika Virus , Humans , Molecular Docking Simulation , Consensus , Antiviral Agents/chemistry
3.
Virus Res ; 340: 199291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065303

ABSTRACT

Here, the antiviral activity of aminoadamantane derivatives were evaluated against SARS-CoV-2. The compounds exhibited low cytotoxicity to Vero, HEK293 and CALU-3 cells up to a concentration of 1,000 µM. The inhibitory concentration (IC50) of aminoadamantane was 39.71 µM in Vero CCL-81 cells and the derivatives showed significantly lower IC50 values, especially for compounds 3F4 (0.32 µM), 3F5 (0.44 µM) and 3E10 (1.28 µM). Additionally, derivatives 3F5 and 3E10 statistically reduced the fluorescence intensity of SARS-CoV-2 protein S from Vero cells at 10 µM. Transmission microscopy confirmed the antiviral activity of the compounds, which reduced cytopathic effects induced by the virus, such as vacuolization, cytoplasmic projections, and the presence of myelin figures derived from cellular activation in the face of infection. Additionally, it was possible to observe a reduction of viral particles adhered to the cell membrane and inside several viral factories, especially after treatment with 3F4. Moreover, although docking analysis showed favorable interactions in the catalytic site of Cathepsin L, the enzymatic activity of this enzyme was not inhibited significantly in vitro. The new derivatives displayed lower predicted toxicities than aminoadamantane, which was observed for either rat or mouse models. Lastly, in vivo antiviral assays of aminoadamantane derivatives in BALB/cJ mice after challenge with the mouse-adapted strain of SARS-CoV-2, corroborated the robust antiviral activity of 3F4 derivative, which was higher than aminoadamantane and its other derivatives. Therefore, aminoadamantane derivatives show potential broad-spectrum antiviral activity, which may contribute to COVID-19 treatment in the face of emerging and re-emerging SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Humans , Animals , Mice , Rats , COVID-19 Drug Treatment , HEK293 Cells , Vero Cells , Amantadine , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
4.
Bioorg Med Chem ; 95: 117488, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37812885

ABSTRACT

Zika virus infection is associated to severe diseases such as congenital microcephaly and Zika fever causing serious harm to humans and special concern to health systems in low-income countries. Currently, there are no approved drugs against the virus, and the development of anti-Zika virus drugs is thus urgent. The present investigation describes the discovery and hit expansion of a N-acyl-2-aminobenzothiazole series of compounds against Zika virus replication. A structure-activity relationship study was obtained with the synthesis and evaluation of anti-Zika virus activity and cytotoxicity on Vero cells of nineteen derivatives. The three optimized compounds were 2.2-fold more potent than the initial hit and 20.9, 7.7 and 6.4-fold more selective. Subsequent phenotypic and biochemical assays were performed to evidence whether non-structural proteins, such as the complex NS2B-NS3pro, are related to the mechanism of action of the most active compounds.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , Vero Cells , Zika Virus Infection/drug therapy , Structure-Activity Relationship , Virus Replication , Antiviral Agents/chemistry , Viral Nonstructural Proteins
5.
Expert Opin Ther Targets ; 27(10): 911-925, 2023.
Article in English | MEDLINE | ID: mdl-37772733

ABSTRACT

INTRODUCTION: Chagas disease (CD) imposes social and economic burdens, yet the available treatments have limited efficacy in the disease's chronic phase and cause serious adverse effects. To address this challenge, target-based approaches are a possible strategy to develop new, safe, and active treatments for both phases of the disease. AREAS COVERED: This review delves into target-based approaches applied to CD drug discovery, emphasizing the studies from the last five years. We highlight the proteins cruzain (CZ), trypanothione reductase (TR), sterol 14 α-demethylase (CPY51), iron superoxide dismutase (Fe-SOD), proteasome, cytochrome b (Cytb), and cleavage and polyadenylation specificity factor 3 (CPSF3), chosen based on their biological and chemical validation as drug targets. For each, we discuss its biological relevance and validation as a target, currently related challenges, and the status of the most promising inhibitors. EXPERT OPINION: Target-based approaches toward developing potential CD therapeutics have yielded promising leads in recent years. We expect a significant advance in this field in the next decade, fueled by the new options for Trypanosoma cruzi genetic manipulation that arose in the past decade, combined with recent advances in computational chemistry and chemical biology.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Chagas Disease/drug therapy , Trypanosoma cruzi/genetics , Drug Discovery
6.
Eur J Med Chem ; 258: 115622, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37441850

ABSTRACT

Chagas disease (CD) is a neglected tropical disease endemic in 21 countries and affects about 8 million people around the world. The pharmacotherapy for this disease is limited to two drugs (Benznidazole and Nifurtimox) and both are associated with important limitations, as low cure rate in the chronic phase of the disease, high toxicity and increasing resistance by Trypanosoma cruzi. Recently, we reported a bioactive 1,2,3-triazole (compound 35) active in vitro (IC50 42.8 µM) and in vivo (100 mg/kg) against T. cruzi Y strains and preliminary in silico studies suggested the cysteine protease cruzain as a possible target. Considering these initial findings, we describe here the design and synthesis of new 1,2,3-triazoles derivatives of our hit compound (35). The triazoles were initially evaluated against healthy cells derived from neonatal rat cardiomyoblasts (H9c2 cells) to determine their cytotoxicity and against epimastigotes forms of T. cruzi Y strain. The most active triazoles were compounds 26 (IC50 19.7 µM) and 27 (IC50 7.3 µM), while benznidazole was active at 21.6 µM. Derivative 27 showed an interesting selectivity index considering healthy H9c2 cells (>77). Promising activities against trypomastigotes forms of the parasite were also observed for triazoles 26 (IC50 20.74 µM) and 27 (IC50 8.41 µM), mainly 27 which showed activity once again higher than that observed for benznidazole (IC50 12.72 µM). While docking results suggested cruzain as a potential target for these compounds, no significant enzyme inhibition was observed in vitro, indicating that their trypanocidal activity is related to another mode of action. Considering the promising in vitro results of triazoles 26 and 27, the in vivo toxicity was initially verified based on the evaluation of behavioral and physiological parameters, mortality, effect in body weight gain, and through the measurement of AST/ALT enzymes, which are markers of liver toxicity. All these evaluations pointed to a good tolerability of the animals, especially considering triazole 27. A reduction in parasitemia was observed among animals treated with triazole 27, but not among those treated with derivative 26. Regarding the dosage, derivative 27 (100 mg/kg) was the most active sample against T. cruzi infection, showing a 99.4% reduction in parasitemia peak. Triazole 27 at a dosage of 100 mg/kg influenced the humoral immune response and reduced myocarditis in the animals, bringing antibody levels closer to those observed among healthy mice. Altogether, our results indicate compound 27 as a new lead for the development of drug candidates to treat Chagas disease.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Mice , Rats , Animals , Eugenol/pharmacology , Triazoles/pharmacology , Triazoles/therapeutic use , Parasitemia/drug therapy , Trypanocidal Agents/toxicity , Chagas Disease/drug therapy
7.
Eur J Med Chem ; 257: 115498, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37290182

ABSTRACT

Over 110 years after the first formal description of Chagas disease, the trypanocidal drugs thus far available have limited efficacy and several side effects. This encourages the search for novel treatments that inhibit T. cruzi targets. One of the most studied anti-T. cruzi targets is the cysteine protease cruzain; it is associated with metacyclogenesis, replication, and invasion of the host cells. We used computational techniques to identify novel molecular scaffolds that act as cruzain inhibitors. First, with a docking-based virtual screening, we identified compound 8, a competitive cruzain inhibitor with a Ki of 4.6 µM. Then, aided by molecular dynamics simulations, cheminformatics, and docking, we identified the analog compound 22 with a Ki of 27 µM. Surprisingly, despite sharing the same isoquinoline scaffold, compound 8 presented higher trypanocidal activity against the epimastigote forms, while compound 22, against the trypomastigotes and amastigotes. Taken together, compounds 8 and 22 represent a promising scaffold for further development of trypanocidal compounds as drug candidates for treating Chagas disease.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Cysteine Endopeptidases/pharmacology , Chagas Disease/drug therapy , Protozoan Proteins
8.
Pathogens ; 12(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36839523

ABSTRACT

Chagas disease and Human African Trypanosomiasis, caused by Trypanosoma cruzi and T. brucei, respectively, pose relevant health challenges throughout the world, placing 65 to 70 million people at risk each. Given the limited efficacy and severe side effects associated with current chemotherapy, new drugs are urgently needed for both diseases. Here, we report the screening of the Pathogen Box collection against cruzain and TbrCatL, validated targets for Chagas disease and Human African Trypanosomiasis, respectively. Enzymatic assays were applied to screen 400 compounds, validate hits, determine IC50 values and, when possible, mechanisms of inhibition. In this case, 12 initial hits were obtained and ten were prioritized for follow-up. IC50 values were obtained for six of them (hit rate = 1.5%) and ranged from 0.46 ± 0.03 to 27 ± 3 µM. MMV687246 was found to be a mixed inhibitor of cruzain (Ki = 57 ± 6 µM) while MMV688179 was found to be a competitive inhibitor of cruzain with a nanomolar potency (Ki = 165 ± 63 nM). A putative binding mode for MMV688179 was obtained by docking. The six hits discovered against cruzain and TbrCatL are of great interest for further optimization by the medicinal chemistry community.

9.
J Chem Inf Model ; 63(5): 1506-1520, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36802548

ABSTRACT

Trypanosoma cruzi is a parasite that infects about 6-7 million people worldwide, mostly in Latin America, causing Chagas disease. Cruzain, the main cysteine protease of T. cruzi, is a validated target for developing drug candidates for Chagas disease. Thiosemicarbazones are one of the most relevant warheads used in covalent inhibitors targeting cruzain. Despite its relevance, the mechanism of inhibition of cruzain by thiosemicarbazones is unknown. Here, we combined experiments and simulations to unveil the covalent inhibition mechanism of cruzain by a thiosemicarbazone-based inhibitor (compound 1). Additionally, we studied a semicarbazone (compound 2), which is structurally similar to compound 1 but does not inhibit cruzain. Assays confirmed the reversibility of inhibition by compound 1 and suggested a two-step mechanism of inhibition. The Ki was estimated to be 36.3 µM and Ki* to be 11.5 µM, suggesting the pre-covalent complex to be relevant for inhibition. Molecular dynamics simulations of compounds 1 and 2 with cruzain were used to propose putative binding modes for the ligands. One-dimensional (1D) quantum mechanics/molecular mechanics (QM/MM) potential of mean force (PMF) and gas-phase energies showed that the attack of Cys25-S- on the C═S or C═O bond yields a more stable intermediate than the attack on the C═N bond of the thiosemicarbazone/semicarbazone. Two-dimensional (2D) QM/MM PMF revealed a putative reaction mechanism for compound 1, involving the proton transfer to the ligand, followed by the Cys25-S- attack at C═S. The ΔG and energy barrier were estimated to be -1.4 and 11.7 kcal/mol, respectively. Overall, our results shed light on the inhibition mechanism of cruzain by thiosemicarbazones.


Subject(s)
Chagas Disease , Semicarbazones , Thiosemicarbazones , Trypanosoma cruzi , Humans , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Cysteine Endopeptidases/chemistry , Protozoan Proteins/chemistry , Cysteine Proteinase Inhibitors/chemistry
10.
Eur J Med Chem ; 244: 114876, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36343429

ABSTRACT

Chagas disease is a major public health problem caused by Trypanosoma cruzi, with an estimated 6-7 million people infected and 70 million at risk of infection. T. brucei gambiense and T. brucei rhodesiense are two subspecies of related parasites that cause human African trypanosomiasis, a neglected tropical disease with also millions of people at risk of infection. Pharmacotherapy for both diseases suffers from low efficacy, side effects, or drug resistance. Recently, we reported a noncovalent competitive inhibitor of cruzain (IC50 26 µM, Ki 3 µM) and TbrCatL (IC50 50 µM), two cysteine proteases considered promising drug targets for trypanosomiasis. Here, we describe the design and synthesis of derivatives of our lead compound. The new thiosemicarbazone derivatives showed potency in the nanomolar concentration range against the two enzymes, but they were later characterized as aggregators. Nevertheless, the thiosemicarbazone derivatives showed promising antiparasitic activities against T. b. brucei (EC50 13-49.7 µM) and T. cruzi (EC50 0.027-0.59 µM) under in vitro conditions. The most active thiosemicarbazone was 200-fold more potent than the current anti-chagasic drug, benznidazole, and showed a selectivity index of 370 versus myoblast cells. We have identified an excellent candidate for further optimization and in vivo studies.


Subject(s)
Chagas Disease , Thiosemicarbazones , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosoma cruzi , Humans , Trypanocidal Agents/pharmacology , Thiosemicarbazones/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship , Chagas Disease/drug therapy
11.
ChemMedChem ; 17(19): e202200211, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35993440

ABSTRACT

Chagas disease is a neglected tropical disease, endemic in Latin America and caused by the protozoan parasite Trypanosoma cruzi. Available treatments show low cure efficacy during the chronic phase of the disease and cause a series of side effects, reinforcing the need to develop new drugs against Chagas disease. In this work, we describe the optimization of a trypanocidal hit compound recently reported in phenotypic high-throughput screening studies against Trypanosoma cruzi. A hit-to-lead process was initiated and a structure-activity relationship against Trypanosoma cruzi was obtained after the synthesis and biological evaluation of 22 new benzenesulfonylpiperazine derivatives. From this structure-activity relationship study, we identified three compounds with a promising predicted ADMET profile and potency comparable to the reference drug benznidazole, which are candidates for further development towards therapies for Chagas disease.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Chagas Disease/drug therapy , Humans , Structure-Activity Relationship
12.
Mem Inst Oswaldo Cruz ; 117: e210385, 2022.
Article in English | MEDLINE | ID: mdl-35293427

ABSTRACT

The need to develop safer and more efficacious drugs to treat Chagas disease has motivated the search for cruzain inhibitors. Cruzain is the recombinant, truncated version of cruzipain, a cysteine protease from Trypanosoma cruzi with important roles during the parasite life cycle. Several computational techniques have been applied to discover and optimise cruzain inhibitors, providing a molecular basis to guide this process. Here, we review some of the most recent computational studies that provided important information for the design of cruzain inhibitors. Moreover, we highlight the diversity of applications of in silico techniques and their impact.


Subject(s)
Cysteine Proteinase Inhibitors , Trypanosoma cruzi , Cysteine Endopeptidases , Cysteine Proteinase Inhibitors/pharmacology , Protozoan Proteins
13.
Chem Biol Drug Des ; 99(5): 703-716, 2022 05.
Article in English | MEDLINE | ID: mdl-34923756

ABSTRACT

The cysteine protease cruzain is a Chagas disease target, exploited in computational studies. However, there is no consensus on the protonation states of the active site residues Cys25, His162, and Glu208 at the enzyme's active pH range. We evaluated the impact of different protonation states of these residues on docking calculations. Through a retrospective study with cruzain inhibitors and decoys, we compared the performance of virtual screening using four grids, varying protonation states of Cys25, His162, and Glu208. Based on enrichment factors and ROC plots, docking with the four grids affected compound ranking and the overall charge of top-ranking compounds. Different grids can be complementary and synergistic, increasing the odds of finding different ligands with diverse chemical properties.


Subject(s)
Cysteine Endopeptidases , Cysteine Proteases , Cysteine Endopeptidases/chemistry , Protozoan Proteins/chemistry , Retrospective Studies
14.
Mem. Inst. Oswaldo Cruz ; 117: e210385, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1365149

ABSTRACT

The need to develop safer and more efficacious drugs to treat Chagas disease has motivated the search for cruzain inhibitors. Cruzain is the recombinant, truncated version of cruzipain, a cysteine protease from Trypanosoma cruzi with important roles during the parasite life cycle. Several computational techniques have been applied to discover and optimise cruzain inhibitors, providing a molecular basis to guide this process. Here, we review some of the most recent computational studies that provided important information for the design of cruzain inhibitors. Moreover, we highlight the diversity of applications of in silico techniques and their impact.

15.
Sci Rep ; 11(1): 18231, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521898

ABSTRACT

Cruzipains are the main papain-like cysteine proteases of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Encoded by a multigenic family, previous studies have estimated the presence of dozens of copies spread over multiple chromosomes in different parasite strains. Here, we describe the complete gene repertoire of cruzipain in three parasite strains, their genomic organization, and expression pattern throughout the parasite life cycle. Furthermore, we have analyzed primary sequence variations among distinct family members as well as structural differences between the main groups of cruzipains. Based on phylogenetic inferences and residue positions crucial for enzyme function and specificity, we propose the classification of cruzipains into two families (I and II), whose genes are distributed in two or three separate clusters in the parasite genome, according with the strain. Family I comprises nearly identical copies to the previously characterized cruzipain 1/cruzain, whereas Family II encompasses three structurally distinct sub-types, named cruzipain 2, cruzipain 3, and cruzipain 4. RNA-seq data derived from the CL Brener strain indicates that Family I genes are mainly expressed by epimastigotes, whereas trypomastigotes mainly express Family II genes. Significant differences in the active sites among the enzyme sub-types were also identified, which may play a role in their substrate selectivity and impact their inhibition by small molecules.


Subject(s)
Catalytic Domain , Cysteine Endopeptidases/genetics , Protozoan Proteins/genetics , Trypanosoma cruzi/genetics , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Gene Expression Regulation, Developmental , Life Cycle Stages/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development
16.
J Chem Theory Comput ; 17(7): 4262-4273, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34142828

ABSTRACT

Free energy perturbation (FEP) calculations are now routinely used in drug discovery to estimate the relative FEB (RFEB) of small molecules to a biomolecular target of interest. Using enhanced sampling can improve the correlation between predictions and experimental data, especially in systems with conformational changes. Due to the large number of perturbations required in drug discovery campaigns, the manual setup of FEP calculations is no longer viable. Here, we introduce PyAutoFEP, a flexible and open-source tool to aid the setup of RFEB FEP. PyAutoFEP is written in Python3, and automates the generation of perturbation maps, dual topologies, system building and molecular dynamics (MD), and analysis. PyAutoFEP supports multiple force fields, incorporates replica exchange with solute tempering (REST) and replica exchange with solute scaling (REST2) enhanced sampling methods, and allows flexible λ values along perturbation windows. To validate PyAutoFEP, it was applied to a set of 14 Farnesoid X receptor ligands, a system included in the drug design data resource grand challenge 2. An 88% mean correct sign prediction was achieved, and 75% of the predictions had an error below 1.5 kcal/mol. Results using Amber03/GAFF, CHARMM36m/CGenFF, and OPLS-AA/M/LigParGen had Pearson's r values of 0.71 ± 0.13, 0.30 ± 0.27, and 0.66 ± 0.20, respectively. The Amber03/GAFF and OPLS-AA/M/LigParGen results were on par with the top grand challenge 2 submissions. Applying REST2 improved the results using CHARMM36m/CGenFF (Pearson's r = 0.43 ± 0.21) but had little impact on the other force fields. CHARMM36-YF and CHARMM36-WYF modifications did not yield improved predictions compared to CHARMM36m. Finally, we estimated the probability of finding a molecule 1 pKi better than a lead when using PyAutoFEP to screen 10 or 100 analogues. The probabilities, when compared to random sampling, increased up to sevenfold when 100 molecules were to be screened, suggesting that PyAutoFEP would likely be useful for lead optimization. PyAutoFEP is available on GitHub at https://github.com/lmmpf/PyAutoFEP.

17.
J Biomol Struct Dyn ; 39(16): 5940-5952, 2021 10.
Article in English | MEDLINE | ID: mdl-32715978

ABSTRACT

Chagasin, an endogenous cysteine protease inhibitor from Trypanosoma cruzi, can control the activity of the parasitic cruzain and its homologous human cathepsin L. While chagasin inhibits both enzymes with similar potency, mutations have different effects on binding to these enzymes. Mutants T31A and T31A/T32A bind well to cathepsin L, but their affinity for cruzain drops ∼40 to 140-fold. On the other hand, the mutant W93A binds well to cruzain, but it loses potency against cathepsin L. Here, we employed molecular dynamics simulations to understand the selectivity in inhibition of cruzain or cathepsin L by chagasin mutants W93A, T31A, and T31A/T32A. Our results allowed profiling the nonbonded interactions in the interfaces of each mutant with these cysteine proteases. Additionally, we observed differences in the binding conformation of the chagasin loops L2 and L6 of the W93A mutant, favoring interactions with cruzain and reducing interactions with cathepsin L. These differences are associated with a partial dissociation of the W93A-cathepsin L complex, providing a likely cause for the selectivity of the mutant W93A towards cruzain.Communicated by Ramaswamy H. Sarma.


Subject(s)
Cysteine Proteases , Trypanosoma cruzi , Cathepsin L/genetics , Cysteine Endopeptidases , Cysteine Proteases/genetics , Cysteine Proteinase Inhibitors/pharmacology , Humans , Molecular Dynamics Simulation , Protozoan Proteins/genetics , Trypanosoma cruzi/genetics
18.
Eur J Med Chem ; 180: 191-203, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31306906

ABSTRACT

Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi. The current chemotherapy is based on benznidazole, and, in some countries, Nifurtimox, which is effective in the acute phase of the disease, but its efficacy in the chronic phase remains controversial. It can also cause serious side effects that lead sufferers to abandon treatment. In the present work, is reported the synthesis and trypanocidal activity of new 2-(phenylthio)ethylidene thiosemicarbazones (4-15) and 1,3-thiazoles (16-26). The cyclization of thiosemicarbazones into 1,3-thiazoles presents an improvement in the cytotoxic profile for T. cruzi parasite, denoting selective compounds. Compound 18 was identified as the most promising of all compounds tested, showing an IC50 of 2.6 µM for the trypomastigote form and a non-cytotoxic effect on mouse spleen cells, reaching a selective index of 95.1. Among the 22 compounds tested, six compounds present a better trypanocidal activity, and five compounds have an equipotent activity compared to benznidazole. Flow cytometry and ultrastructural analysis were performed and indicate that compound 18 causes parasite cell death through apoptosis and acts via an autophagic pathway.


Subject(s)
Drug Design , Thiazoles/pharmacology , Thiosemicarbazones/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
19.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 6): 419-427, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31204688

ABSTRACT

Chagas disease, which is caused by Trypanosoma cruzi, affects more than six million people worldwide. Cruzain is the major cysteine protease involved in the survival of this parasite. Here, the expression, purification and crystallization of this enzyme are reported. The cruzain crystals diffracted to 1.2 Šresolution, yielding two novel cruzain structures: apocruzain and cruzain bound to the reversible covalent inhibitor S-methyl thiomethanesulfonate. Mass-spectrometric experiments confirmed the presence of a methylthiol group attached to the catalytic cysteine. Comparison of these structures with previously published structures indicates the rigidity of the cruzain structure. These results provide further structural information about the enzyme and may help in new in silico studies to identify or optimize novel prototypes of cruzain inhibitors.


Subject(s)
Apoproteins/chemistry , Apoproteins/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/metabolism , Drug Design , Methyl Methanesulfonate/analogs & derivatives , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemistry , Methyl Methanesulfonate/chemistry , Methyl Methanesulfonate/metabolism , Models, Molecular , Protein Conformation
20.
Curr Med Chem ; 26(23): 4435-4453, 2019.
Article in English | MEDLINE | ID: mdl-28799498

ABSTRACT

Cysteine proteases are essential hydrolytic enzymes present in the majority of organisms, including viruses and unicellular parasites. Despite the high sequence identity displayed among these proteins, specific structural features across different species grant distinct functions to these biomolecules, frequently related to pathological conditions. Consequently, their relevance as promising targets for potential specific inhibitors has been highlighted and occasionally validated in recent decades. In this review, we discuss the recent outcomes of structure-based campaigns aiming the discovery of new inhibitor prototypes against cruzain and falcipain, as alternative therapeutic tools for Chagas disease and malaria treatments, respectively. Computational and synthetic approaches have been combined on hit optimization strategies and are also discussed herein. These rationales are extended to additional tropical infectious and neglected pathologies, such as schistosomiasis, leishmaniasis and babesiosis, and also to Alzheimer's Disease, a widespread neurodegenerative disease poorly managed by currently available drugs and recently linked to particular physiopathological roles of human cysteine proteases.


Subject(s)
Cysteine Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Animals , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...