Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: mdl-36917195

ABSTRACT

Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.


Subject(s)
Extracellular Traps , Sepsis , Mice , Animals , Fibrinolysin , Plasminogen , Extracellular Traps/metabolism , Interleukin-6/metabolism , Inflammation/metabolism , Sepsis/metabolism , Fibrin/metabolism
2.
J Infect ; 77(5): 391-397, 2018 11.
Article in English | MEDLINE | ID: mdl-30226191

ABSTRACT

Sepsis is an overwhelming systemic inflammation resulting from an uncontrolled infection that causes extensive tissue damage, organ dysfunction and eventually death. A growing body of evidence indicates that impaired neutrophil migration to the site of infection is associated with poor outcome in sepsis. Here we show that galectin-3 (Gal-3), an endogenous glycan-binding protein, plays a critical role in sepsis outcome. We found that serum Gal-3 concentration increased in patients with septic shock and mice undergoing sepsis induced by cecal ligation and puncture (CLP). Mice deficient in Gal-3 (Gal-3 KO) are more resistant to sepsis induced by CLP, showing lower levels of biochemical markers and neutrophil infiltration for organ injury/dysfunction than those observed in wild-type mice (WT). Furthermore, Gal-3 KO mice show an increased number of neutrophils in the primary focus of infection and reduced bacterial loads in the peritoneal cavity, blood, and lungs. Mechanistically, blood neutrophils from septic mice show higher levels of surface-bound Gal-3 than neutrophils from naive mice. The deficiency of Gal-3 was associated with increased rolling and adhesion of these cells in mesenteric venules. Our results indicate that Gal-3, secreted during sepsis, inhibits neutrophil migration into the infectious focus, which promotes the bacterial spread and worsens the outcome of sepsis.


Subject(s)
Coinfection/blood , Coinfection/immunology , Galectin 3/blood , Neutrophil Infiltration , Sepsis/immunology , Sepsis/microbiology , Aged , Animals , Blood Proteins , Disease Models, Animal , Female , Galectin 3/immunology , Galectins , Humans , Lung/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Peritoneum/microbiology
3.
Nat Commun ; 8: 14919, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28374774

ABSTRACT

Patients who survive sepsis can develop long-term immune dysfunction, with expansion of the regulatory T (Treg) cell population. However, how Treg cells proliferate in these patients is not clear. Here we show that IL-33 has a major function in the induction of this immunosuppression. Mice deficient in ST2 (IL-33R) develop attenuated immunosuppression in cases that survive sepsis, whereas treatment of naive wild-type mice with IL-33 induces immunosuppression. IL-33, released during tissue injury in sepsis, activates type 2 innate lymphoid cells, which promote polarization of M2 macrophages, thereby enhancing expansion of the Treg cell population via IL-10. Moreover, sepsis-surviving patients have more Treg cells, IL-33 and IL-10 in their peripheral blood. Our study suggests that targeting IL-33 may be an effective treatment for sepsis-induced immunosuppression.


Subject(s)
Immune Tolerance/immunology , Interleukin-33/immunology , Sepsis/immunology , T-Lymphocytes, Regulatory/immunology , Aged , Animals , Female , Humans , Immune Tolerance/genetics , Interleukin-1 Receptor-Like 1 Protein/deficiency , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukin-33/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Sepsis/genetics , Sepsis/metabolism , T-Lymphocytes, Regulatory/metabolism
4.
Front Immunol ; 8: 1890, 2017.
Article in English | MEDLINE | ID: mdl-29375557

ABSTRACT

Although antibiotic-induced dysbiosis has been demonstrated to exacerbate intestinal inflammation, it has been suggested that antibiotic prophylaxis may be beneficial in certain clinical conditions such as acute pancreatitis (AP). However, whether broad-spectrum antibiotics, such as meropenem, influence the dissemination of multidrug-resistant (MDR) bacteria during severe AP has not been addressed. In the currently study, a mouse model of obstructive severe AP was employed to investigate the effects of pretreatment with meropenem on bacteria spreading and disease outcome. As expected, animals subjected to biliopancreatic duct obstruction developed severe AP. Surprisingly, pretreatment with meropenem accelerated the mortality of AP mice (survival median of 2 days) when compared to saline-pretreated AP mice (survival median of 7 days). Early mortality was associated with the translocation of MDR strains, mainly Enterococcus gallinarum into the blood stream. Induction of AP in mice with guts that were enriched with E. gallinarum recapitulated the increased mortality rate observed in the meropenem-pretreated AP mice. Furthermore, naïve mice challenged with a mouse or a clinical strain of E. gallinarum succumbed to infection through a mechanism involving toll-like receptor-2. These results confirm that broad-spectrum antibiotics may lead to indirect detrimental effects during inflammatory disease and reveal an intestinal pathobiont that is associated with the meropenem pretreatment during obstructive AP in mice.

5.
Pharmacol Res ; 117: 1-8, 2017 03.
Article in English | MEDLINE | ID: mdl-27979692

ABSTRACT

Sepsis is one of the main causes of mortality in hospitalized patients. Despite the recent technical advances and the development of novel generation of antibiotics, severe sepsis remains a major clinical and scientific challenge in modern medicine. Unsuccessful efforts have been dedicated to the search of therapeutic options to treat the deleterious inflammatory components of sepsis. Recent findings on neuronal networks controlling immunity raised expectations for novel therapeutic strategies to promote the regulation of sterile inflammation, such as autoimmune diseases. Interesting studies have dissected the anatomical constituents of the so-called "cholinergic anti-inflammatory pathway", suggesting that electrical vagus nerve stimulation and pharmacological activation of beta-2 adrenergic and alpha-7 nicotinic receptors could be alternative strategies for improving inflammatory conditions. However, the literature on infectious diseases, such as sepsis, is still controversial and, therefore, the real therapeutic potential of this neuroimmune pathway is not well defined. In this review, we will discuss the beneficial and detrimental effects of neural manipulation in sepsis, which depend on the multiple variables of the immune system and the nature of the infection. These observations suggest future critical studies to validate the clinical implications of vagal parasympathetic signaling in sepsis treatment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cholinergic Agents/pharmacology , Cholinergic Agents/therapeutic use , Sepsis/drug therapy , Animals , Humans , Immune System/drug effects , Inflammation/drug therapy , Signal Transduction/drug effects , Vagus Nerve/drug effects
6.
Eur J Pharmacol ; 685(1-3): 198-204, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22543086

ABSTRACT

Several emerging lines of evidence support an anti-inflammatory role for nicotinamide and other vitamin B components. However, the mechanisms underlying their activity remain unclear. In the present study, we investigated the ability of nicotinamide to inhibit both neutrophil recruitment in IL-8-, LTB(4)- or carrageenan-induced pleurisy in mice and the rolling and adherence of neutrophils. Nicotinamide inhibited IL-8-, LTB(4)- and carrageenan-induced neutrophil migration, KC production and carrageenan-induced neutrophil rolling and adherence. We propose that the effects of nicotinamide in inhibiting neutrophil recruitment in carrageenan-induced pleurisy may be due to the ability of nicotinamide to inhibit the action of IL-8 and LTB(4), decrease KC production, and inhibit early events that regulate leukocyte migration from blood vessels into tissue.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Neutrophil Infiltration/drug effects , Niacinamide/pharmacology , Pleurisy/drug therapy , Animals , Carrageenan/pharmacology , Cell Adhesion/drug effects , Disease Models, Animal , Interleukin-8/pharmacology , Leukocyte Rolling/drug effects , Leukotriene B4/pharmacology , Male , Mice , Mice, Inbred BALB C , Pleurisy/immunology
7.
Pharmacol Biochem Behav ; 101(3): 493-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22366213

ABSTRACT

Although in vitro studies have shown that nicotinic acid inhibits some aspects of the inflammatory response, a reduced number of in vivo studies have investigated this activity. To the best of our knowledge, the effects induced by nicotinic acid in models of nociceptive and inflammatory pain are not known. Per os (p.o.) administration of nicotinic acid (250, 500 or 1000 mg/kg, -1 h) inhibited the first and the second phases of the nociceptive response induced by formalin in mice. Nicotinic acid (250 or 500 mg/kg, -1 and 3 h) also inhibited the mechanical allodynia induced by carrageenan in rats, a model of inflammatory pain. However, in a model of nociceptive pain, exposure of mice to a hot-plate, nicotinic acid was devoid of activity. In addition to inhibiting the nociceptive response in models of inflammatory pain, nicotinic acid (250 or 500 mg/kg, p.o., -1 and 3 h) inhibited paw edema induced by carrageenan in mice and rats. Picolinic acid (62.5 or 125 mg/kg, p.o., -1 h), a nicotinic acid isomer, inhibited both phases of the nociceptive response induced by formalin, but not paw edema induced by carrageenan in mice. The other nicotinic acid isomer, isonicotinic acid, was devoid of activity in these two models. In conclusion, our results represent the first demonstration of the activity of nicotinic acid in experimental models of nociceptive and inflammatory pain and also provide further support to its anti-inflammatory activity. It is unlikely that conversion to nicotinamide represents an important mechanism to explain the antinociceptive and anti-inflammatory activities of nicotinic acid. The demonstration of new activities of nicotinic acid, a drug that has already been approved for clinical use and presents a positive safety record, may contribute to raise the interest in conducting clinical trials to investigate its usefulness in the treatment of painful and inflammatory diseases.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Niacin/pharmacology , Pain/drug therapy , Animals , Carrageenan/toxicity , Disease Models, Animal , Edema/drug therapy , Edema/etiology , Female , Humans , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Mice , Motor Activity/drug effects , Pain/etiology , Pain Measurement , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...