ABSTRACT
A valuable approach to understand how individual and population genetic differences can predispose to disease is to assess the impact of genetic variants on cellular functions (e.g., gene expression) of cell and tissue types related to pathological states. To understand the genetic basis of nonsyndromic cleft lip with or without cleft palate (NSCL/P) susceptibility, a complex and highly prevalent congenital malformation, we searched for genetic variants with a regulatory role in a disease-related tissue, the lip muscle (orbicularis oris muscle [OOM]), of affected individuals. From 46 OOM samples, which are frequently discarded during routine corrective surgeries on patients with orofacial clefts, we derived mesenchymal stem cells and correlated the individual genetic variants with gene expression from these cultured cells. Through this strategy, we detected significant cis-eQTLs (i.e., DNA variants affecting gene expression) and selected a few candidates to conduct an association study in a large Brazilian cohort (624 patients and 668 controls). This resulted in the discovery of a novel susceptibility locus for NSCL/P, rs1063588, the best eQTL for the MRPL53 gene, where evidence for association was mostly driven by the Native American ancestry component of our Brazilian sample. MRPL53 (2p13.1) encodes a 39S protein subunit of mitochondrial ribosomes and interacts with MYC, a transcription factor required for normal facial morphogenesis. Our study illustrates not only the importance of sampling admixed populations but also the relevance of measuring the functional effects of genetic variants over gene expression to dissect the complexity of disease phenotypes.
Subject(s)
Cleft Lip/genetics , Cleft Palate/genetics , Ribosomal Proteins/genetics , Adolescent , Child , Child, Preschool , Female , Genes/genetics , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Male , Mitochondrial Ribosomes/metabolism , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Young AdultABSTRACT
HYPOTHESIS: Liquid crystalline precursors, which are in situ gelling nanostructured surfactant systems, can undergo phase transition in aqueous solution and become more structured aggregates, controlling release of larvicides and acting as biotechnology alternatives for dengue control. Such systems can contain bioactive substances as Citrus sinensis essential oil (CSEO) which exhibits biological activity against Aedes aegypti (Ae. aegypti) larvae. EXPERIMENTS: The formulations were composed by fixed concentration of CSEO stabilized by Polyoxypropylene (5) Polyoxyethylene (20) Cetyl Ether (PPG-5 CETETH-20): oleic acid (OA) 2:1, increasing water content. The phase diagram was established and systems structure was evaluated by polarized light microscopy (PLM), small angle X-ray scattering (SAXS) and rheology. Median lethal concentration was determined against Ae. aegypti larvae. FINDINGS: The phase diagram exhibited four regions: liquid crystal (LC), emulsion, microemulsion (ME) and phase separation. The PLM and SAXS distinguished microemulsions, lamellar and hexagonal LC structures. Flow and oscillatory tests showed that increasing water content increases elasticity from Newtonian to non-newtonian behavior confirming the in situ gelation behavior. The larvicidal activity of formulations indicates that these nanostructured systems improved the oil solubility in aqueous medium and in addition are potential environmental larvicide against Ae. aegypti larvae.
Subject(s)
Aedes/drug effects , Dengue/prevention & control , Insecticides/chemistry , Oils, Volatile/chemistry , Surface-Active Agents/chemistry , Animals , Citrus , Drug Delivery Systems , Emulsions , Gels , Humans , Liquid Crystals/chemistry , Nanostructures/chemistry , Scattering, Radiation , Scattering, Small Angle , Viscosity , Water/chemistry , X-Ray Diffraction , X-RaysABSTRACT
The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50â mg/kg). Animals received melatonin during the dark period for 15 days (1â mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48â h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.
Subject(s)
Antioxidants/administration & dosage , DNA Damage/drug effects , Melatonin/administration & dosage , Animals , Chromosome Aberrations , Cyclophosphamide , Injections, Intraperitoneal , Male , Mutagens , Oxidation-Reduction , Rats, WistarABSTRACT
The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.
Subject(s)
Animals , Male , Antioxidants/administration & dosage , DNA Damage/drug effects , Melatonin/administration & dosage , Chromosome Aberrations , Cyclophosphamide , Injections, Intraperitoneal , Mutagens , Oxidation-Reduction , Rats, WistarABSTRACT
BACKGROUND: After brain death (BD) donors usually experience cardiac dysfunction, which is responsible for a considerable number of unused organs. Causes of this cardiac dysfunction are not fully understood. Some authors argue that autonomic storm with severe hemodynamic instability leads to inflammatory activation and myocardial dysfunction. OBJECTIVES: To investigate the hypothesis that thoracic epidural anesthesia blocks autonomic storm and improves graft condition by reducing the inflammatory response. METHODS: Twenty-eight male Wistar rats (250-350 g) allocated to four groups received saline or bupivacaine via an epidural catheter at various times in relation to brain-death induction. Brain death was induced by a sudden increase in intracranial pressure by rapid inflation of a ballon catheter in the extradural space. Blood gases, electrolytes, and lactate analyses were performed at time zero, and 3 and 6 hours. Blood leukocytes were counted at 0 and 6 hours. After 6 hours of BD, we performed euthanasia to measure vascular adhesion molecule (VCAM)-1, intracellular adhesion molecule (ICAM)-1, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, Bcl-2 and caspase-3 on cardiac tissue. RESULTS: Thoracic epidural anesthesia was effective to block the autonomic storm with a significant difference in mean arterial pressure between the untreated (saline) and the bupivacaine group before BD (P < .05). However, no significant difference was observed for the expressions of VCAM-1, ICAM-1, TNF-α, IL-1ß, Bcl-2, and caspase-3 (P > .05). CONCLUSION: Autonomic storm did not seem to be responsible for the inflammatory changes associated with BD; thoracic epidural anesthesia did not modify the expression of inflammatory mediators although it effectively blocked the autonomic storm.