Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(21): 30427-30439, 2024 May.
Article in English | MEDLINE | ID: mdl-38607483

ABSTRACT

In southeastern Brazil, the city of Ipatinga is inserted in the Steel Valley Metropolitan Region, which hosts the largest industrial complex for flat-steel production in Latin America, while also having one of the largest vehicle fleets in the entire country. Since potentially toxic elements (PTEs) are not emitted solely by industries, yet also by vehicular activity, the predominant emission source can be determined by evaluating the ratio between different elements, which are called technogenic tracers. We performed a biomonitoring assay using two tropical legumes, Paubrasilia echinata and Libidibia ferrea var. leiostachya, aiming to assess chemical markers for the origin of emissions in the region, distinguishing between different anthropogenic sources. Plants were exposed for 90 days in four urban sites and in a neighboring park which served as reference. After the experimental period, plants were evaluated for trace-metal accumulation. L. ferrea var. leiostachya retained lower amounts of metals associated with vehicular and industrial emission. The opposite was found with P. echinata, a species which should be recommended for biomonitoring of air pollution as a bioaccumulator. Plants of P. echinata were enriched with Fe, Al, Ni, Cr, and Ba, whereas plants of L. ferrea var. leiostachya were enriched with Fe, Cu, and Co. In both species, Fe was the element with which plants were enriched the most. Plants showed highest iron enrichment at Bom Retiro, the site downwind to the steel industry, which has shown to be the main particle emission source in the region.


Subject(s)
Environmental Monitoring , Brazil , Environmental Monitoring/methods , Metals/analysis , Steel , Plants , Air Pollutants/analysis , Air Pollution
2.
Int J Biol Macromol ; 228: 23-39, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36565824

ABSTRACT

Hops' (Humulus lupulus L.) phytochemicals are well known for their bioactivity. In the present study, the functional properties of hop extract rich in ß-acids, as potassium-salts structures (KBA), were investigated to develop a sustainable active food packaging. Polylactic acid (PLA)-based sheets were incorporated with increasing concentrations of hop extract (0.1-5 % w/w in terms of KBA) and characterized through performance and bioactive properties. KBA-added sheets presented decreased crystallinity and affected mechanical and thermal properties, especially with higher KBA amounts. The sheets' surface hydrophobicity gradually decreased by KBA-extract addition, while the water vapor permeability was not affected. A Fickian diffuse behavior and a better fit to application in fatty foods were observed during release tests. UV-blocking and antioxidant properties were improved by KBA incorporation. Furthermore, results from antibacterial assays revealed great susceptibility of Staphylococcus aureus and Listeria monocytogenes towards sheets added with 5 % of KBA. Moreover, the atomic force microscopy (AFM) observations revealed that KBA led to strong effects on the cell membranes of both bacteria, including disruption of membrane integrity and cell death. Therefore, this study is a sign of great prospects of hop ß-acids use, as KBA compound, in the production of sustainable active packaging for safe food shelf-life extension.


Subject(s)
Food Packaging , Humulus , Food Packaging/methods , Humulus/chemistry , Anti-Bacterial Agents/pharmacology , Polyesters , Acids
3.
Sci Total Environ ; 823: 153681, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35134410

ABSTRACT

We aimed to test a set of epidermal traits in two legume species with contrasting chemical, physical, and micromorphological leaf-surface features to assess which ones would determine higher PM retention. For that, we performed a biomonitoring study in southeastern Brazil at the Steel Valley Metropolitan Region, where there is predominance of steel industry and one of the largest vehicle fleets in the country. A reference station was installed at a neighboring park. We evaluated leaf-surface roughness at two hierarchical levels, leaf wettability, epidermal-cell anticlinal-wall undulation, epidermal-cell perimeter, and the micromorphology and chemical composition of epicuticular waxes. Particle retention was significantly higher in Paubrasilia echinata than in Libidibia ferrea var. leiostachya, the former of which has lower roughness given by both the epidermal tissue (macro-roughness; 0.6 vs 2.6 µm) and epicuticular waxes (micro-roughness; 68 vs 220 nm), higher leaf wettability (82° vs 143°), lower epidermal-cell undulation index (1.2 vs 1.8), lower epidermal-cell perimeter (93 vs 146 µm), wax deposition in the form of a smooth layer (as opposed to densely aggregated rosettes of vertical platelets), and more polar wax chemical constitution (68% vs 47% of polar compounds). While all of the assessed traits contributed to particle retention, canonical loadings revealed that macro-roughness was the trait that contributed the most to the retention of PM2.5 (ca = 1.47; r = -0.56), PM10 (ca = 1.08; r = -0.61), PM100 (ca = -4.95; r = -0.39) and TSP (ca = 0.98; r = -0.62), although this trait was shown by factor analysis to be secondary in distinguishing between species (0.92 contribution to the second axis). Our findings shed new light on the criteria that should be considered when selecting species for green infrastructure aiming to reduce urban air pollution, as well as on novel possibilities for PM biomonitoring in the tropics.


Subject(s)
Air Pollution , Fabaceae , Adsorption , Plant Leaves/chemistry , Waxes/analysis
4.
J Environ Manage ; 304: 114189, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34864413

ABSTRACT

Colonization by sulfate-reducing bacteria (SRB) in environments associated with oil is mainly dependent on the availability of sulfate and carbon sources. The formation of biofilms by SRB increases the corrosion of pipelines and oil storage tanks, representing great occupational and operational risks and respective economic losses for the oil industry. The aim of this study was to evaluate the influence of the addition of acetate, butyrate, lactate, propionate and oil on the structure of biofilm formed in carbon steel coupons, as well as on the diversity of total bacteria and SRB in the planktonic and sessile communities from petroleum produced water. The biofilm morphology, chemical composition, average roughness and the microbial diversity was analyzed. In all carbon sources, formation of dense biofilm without morphological and/or microbial density differences was detected, with the most of cells observed in the form of individual rods. The diversity and richness indices of bacterial species in the planktonic community was greater than in the biofilm. Geotoga was the most abundant genus, and more than 85% of SRB species were common to all treatments. The functional predicted profile shown that the observed genres in planktonic communities were related to the reduction of sulfate, sulfite, elementary sulfur and other sulfur compounds, but the abundance varied between treatments. For the biofilm, the functions predicted profile for the oil treatment was the one that most varied in relation to the control, while for the planktonic community, the addition of all carbon sources interfered in the predicted functional profile. Thus, although it does not cause changes in the structure and morphology biofilm, the supplementation of produced water with different carbon sources is associated with changes in the SRB taxonomic composition and functional profiles of the biofilm and the planktonic bacterial communities.


Subject(s)
Petroleum , Bacteria , Biofilms , Carbon , Corrosion , Dietary Supplements , Sulfates , Water
5.
RSC Adv ; 11(39): 24072-24085, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-35479047

ABSTRACT

In this work, we have explored the catalytic activity of Keggin-type heteropolyanions PMo12-n V n O40 (3+n)- (n = 0, 1, 2, or 3) in the form of sodium salts in green oxidation routes of terpene alcohols with hydrogen peroxide. Nerol was the model molecule selected to assess the impacts of the main reaction parameters, such as temperature, catalyst load, and stoichiometry of reactants. The impacts of the presence of vanadium at different proportions (i.e., V1, V2, and V3 loads/per anion) in the structure of phosphomolybdate catalysts were assessed. All the catalysts were characterized by various techniques such as powder X-ray diffraction, attenuated diffuse reflectance infrared spectroscopy, ultraviolet-visible spectroscopy, thermogravimetric analysis, isotherms of adsorption-desorption of N2 measurements of surface area, scanning electronic microscopy, energy-dispersive X-ray spectroscopy, and n-butylamine potentiometric titration. Among the catalysts assessed, Na4PMo11VO40 was the most active and selective toward epoxides. The efficiency of this catalyst in the epoxidation of different terpene alcohols was investigated. Special attention was dedicated to correlating the composition and properties of the vanadium-doped phosphomolybdic catalysts with their catalytic activity.

6.
Braz J Microbiol ; 51(3): 1269-1277, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32291740

ABSTRACT

Salmonella can enter on the viable but non-culturable state (VBNC), characterized by the loss of ability to grow in routine culture media hindering detection by conventional methods and underestimation of the pathogen. Despite advances in research done so far, studies comparing conditions that lead Salmonella into the VBNC state are scarce. The main objective of this study was to evaluate different stresses to induce Salmonella to the VNBC state. Osmotic (1.2 M NaCl), acid (peracetic acid, 5.66 mg/mL) and oxidative (hydrogen peroxide, 1.20 mg/mL) stress were used at 4 °C to induce Salmonella enterica serovars Enteritidis and Typhimurium to the VBNC state. The culturability loss was monitored in the brain heart infusion (BHI) broth and agar, and the viability was determined by fluorescence microscopy, using the Live/Dead® kit, and by flow cytometry. Besides, the morphological characterization by atomic force microscopy (AFM) was performed. Storage in 1.2 M NaCl at 4 °C induced the VBNC state in Salmonella cells for periods longer than 121 days, and the percentage of viable cells has reached above 80.9%. More aggressive stress conditions promoted by peracetic acid and hydrogen peroxide induced the VBNC state in periods of, at most 0.14 day, and resulted in percentages of 8.5% to 45.5% viable cells, respectively. The counts of viable cells in the flow cytometer corroborate the results obtained by microscopic counts. The VBNC cells obtained in 1.2 M NaCl at 4 °C showed morphological changes, reducing the size and changing the morphology from bacillary to coccoid. No morphological change was observed on the cells stressed by acid or oxidant compounds.


Subject(s)
Salmonella enteritidis/growth & development , Salmonella typhimurium/growth & development , Culture Media/chemistry , Culture Media/metabolism , Hydrogen Peroxide/pharmacology , Microbial Viability/drug effects , Osmosis , Peracetic Acid/pharmacology , Salmonella enteritidis/drug effects , Salmonella enteritidis/physiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/physiology , Sodium Chloride/pharmacology , Stress, Physiological
7.
J Environ Manage ; 255: 109845, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31778866

ABSTRACT

The magnetic adsorbent prepared with hydrocalumite-iron oxide (HC/Fe) modified with dodecyl sulfate (DS) was examined for the removal of the agrichemicals atrazine (ATZ) and chlorpyrifos (CPF) from aqueous solution. The adsorbent HC-DS/Fe was characterized by infrared spectroscopy (IR), Raman spectroscopy, X-ray diffractometry (XRD) and atomic absorption spectrometry. The effects of adsorbent dosage, contact time, pH and initial concentration of ATZ and CPF were evaluated. HC-DS/Fe presented a maximum adsorption capacity for ATZ of 4.5 mg g-1 (30 min) and for CPF of 72.9 mg g-1 (210 min) at 25 °C. HC-DS/Fe can be readily removed from the aqueous solution by magnetization because of its magnetic properties. The free energy variation for HC-DS/Fe during the adsorption of the ATZ was -48.78 to -53.91 kJ mol-1 and for the CPF of -55.79 to -59.28 kJ mol-1, suggesting the spontaneity of the adsorption process. The positive value of △H suggests an endothermic process for the interaction of ATZ and CPF by HC-DS/Fe. This adsorbent showed satisfactory results when used in the treatment of a sample of river water, fortified with the agrichemicals chlorpyrifos, atrazine, thiamethoxam and acetamiprid.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Agrochemicals , Aluminum Oxide , Calcium Chloride , Ferric Compounds , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena , Sodium Dodecyl Sulfate
8.
J Texture Stud ; 50(6): 547-555, 2019 12.
Article in English | MEDLINE | ID: mdl-31276201

ABSTRACT

The objective of this study was to assess the microstructural characteristics of goat's milk chocolates formulated with different concentrations of cocoa mass by rheological measurements and microscopy. For rheological characterization, rotational and oscillatory tests were performed, while crystal morphology was observed by means of atomic force microscopy (AFM) and 3D optical profilometer. It was verified that the chocolates presented pseudoplastic and thixotropic behavior. The Herschel-Bulkley model adequately described the flow behavior of the formulations. In the oscillatory tests, it was found that the tangent δ (loss) decreased from 0.33 to 0.17 as a function of the increase in cocoa mass concentration. The creep recovery tests were consistent with the other rheological tests. The analysis of AFM and profilometer indicated that there are different microscopic pores on the surface of the chocolates, and that with the increase in the concentration of cocoa mass, it has a structure with greater interactions.


Subject(s)
Chocolate/analysis , Milk/chemistry , Animals , Cacao/chemistry , Chemical Phenomena , Food Handling , Goats , Rheology , Viscosity
9.
Carbohydr Polym ; 94(1): 199-208, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23544529

ABSTRACT

This work aimed to develop nanocomposite films of methyl cellulose (MC) incorporated with pediocin and zinc oxide nanoparticles (nanoZnO) using the central composite design and response surface methodology. This study evaluated film physical-mechanical properties, including crystallography by X-ray diffraction, mechanical resistance, swelling and color properties, microscopy characterization, thermal stability, as well as antimicrobial activity against Staphylococcus aureus and Listeria monocytogenes. NanoZnO and pediocin affected the crystallinity of MC. Load at break and tensile strength at break did not differ among films. NanoZnO and pediocin significantly affected the elongation at break. Pediocin produced yellowish films, but nano ZnO balanced this effect, resulting in a whitish coloration. Nano ZnO exhibited good intercalation in MC and the addition of pediocin in high concentrations resulted crater-like pits in the film surfaces. Swelling of films diminished significantly compared to control. Higher concentrations of Nano ZnO resulted in enhanced thermal stability. Nanocomposite films presented antimicrobial activity against tested microorganisms.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacteriocins/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Zinc Oxide/chemistry , Algorithms , Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Disk Diffusion Antimicrobial Tests , Food Packaging , Linear Models , Listeria monocytogenes/drug effects , Methylcellulose/chemistry , Particle Size , Staphylococcus aureus/drug effects , Surface Properties , Tensile Strength , Thermogravimetry , X-Ray Diffraction , Zinc Oxide/pharmacology
10.
World J Microbiol Biotechnol ; 28(2): 485-91, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22806843

ABSTRACT

Staphylococcus aureus is an important pathogen for both humans and animals, and it has been an ubiquitous etiological agent of bovine mastitis in dairy farms worldwide. Elimination of S. aureus with classic antibiotics is difficult, and the current study aimed to evaluate the efficacy of ethanolic extracts of propolis (EEP) against S. aureus cultivated in complex media or milk. EEP (0-0.5 mg ml(-1)) decreased growth of S. aureus in BHI media and 1 mg ml(-1) was bactericidal against washed cell suspensions (10(7) CFU ml(-1)). Propolis extracts also killed S. aureus cells resuspended in milk, but the bactericidal dose was at least 20-fold greater. Cultures that were transferred for at least 60 generations with sub-lethal doses of propolis did not change much their sensibility to EEP. Atomic force microscopy images revealed changes in morphology and cell size of S. aureus cells exposed to EEP (0.5 mg ml(-1)). Our results indicate that propolis extracts might be effective against mastitis-causing S. aureus strains in vivo, but milk constituents affect the inhibitory activity of propolis. Considering that propolis-resistance appears to be a phenotype not easily selected, the use of EEP combined or not with other antimicrobial agents might be useful for mastitis control in vivo.


Subject(s)
Ethanol/chemistry , Mastitis, Bovine/drug therapy , Propolis/chemistry , Propolis/therapeutic use , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/therapeutic use , Cattle , Mastitis, Bovine/microbiology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity
11.
Braz. j. microbiol ; 41(4): 984-992, Oct.-Dec. 2010. graf, tab
Article in English | LILACS | ID: lil-595739

ABSTRACT

The interaction between the surface of stainless steel and Bacillus cereus was studied in terms of the characteristics of interfacial interaction determined from the measurement of the contact angle of the surface of B. cereus and stainless steel in the presence or absence of B. cereus adherence. The microtopographies and the roughness of the surface of stainless steel and stainless steel adhered by B. cereus were evaluated with the help of atomic force microscopy and perfilometry. The strain of B. cereus studied was considered hydrophilic, whereas the stainless steel was considered hydrophobic. The adhesion was not thermodynamically favorable (ΔGadhesion > 0) between the stainless steel and the strain of B. cereus studied. Thus, the interaction between them was not favored by the thermodynamic aspect of adhesion. There was no difference (p > 0.05) in the roughness of the surfaces of stainless steel adhered by B. cereus when analyzed by atomic force microscope and perfilometry.

12.
Braz J Microbiol ; 41(4): 984-92, 2010 Oct.
Article in English | MEDLINE | ID: mdl-24031578

ABSTRACT

The interaction between the surface of stainless steel and Bacillus cereus was studied in terms of the characteristics of interfacial interaction determined from the measurement of the contact angle of the surface of B. cereus and stainless steel in the presence or absence of B. cereus adherence. The microtopographies and the roughness of the surface of stainless steel and stainless steel adhered by B. cereus were evaluated with the help of atomic force microscopy and perfilometry. The strain of B. cereus studied was considered hydrophilic, whereas the stainless steel was considered hydrophobic. The adhesion was not thermodynamically favorable (ΔGadhesion > 0) between the stainless steel and the strain of B. cereus studied. Thus, the interaction between them was not favored by the thermodynamic aspect of adhesion. There was no difference (p > 0.05) in the roughness of the surfaces of stainless steel adhered by B. cereus when analyzed by atomic force microscope and perfilometry.

13.
Braz. j. microbiol ; 34(2): 175-178, Apr.-Jun. 2003. ilus, tab, graf
Article in English | LILACS | ID: lil-355169

ABSTRACT

Efficiency of ultraviolet (UV) radiation in reducing the cell number of Staphylococcus aureus ATCC 25923 and Escherichia coli K-12 adhered to low-density polyethylene (LDPE) films was evaluated. The microorganisms were let to adhere to the surface of LPDE bags for 12h at 18liC, and then submitted to UV radiation at an intensity 196 icW.cm-2, 254nm, for 2 seconds. Staphylococcus aureus was less resistant to UV radiation than E. coli, and the efficiency increased with the increase of the concentration of microbial suspension. After 1500 hours of use the UV radiation intensity of the lamp was reduced from 288 to 78 icW.cm-2, and the higher decrease occurred in the first 100 hours of use. Also, the efficiency of the UV radiation decreased after 1500 hours of use. The number of mesophilic aerobes on the surface of LDPE films was reduced by 90 percent after irradiation with 137 icW.cm-2 for 2 seconds. Atomic force microscopy revealed cracks and crevices and protuberances on the LDPE surface, a topography that can protect the cells from UV radiation, reducing the efficiency of the process. The results showed that UV radiation can be a useful technique for reducing the microbiota adhered to LDPE films.


Subject(s)
Bacterial Adhesion/radiation effects , Escherichia coli/radiation effects , Sterilization , Staphylococcus aureus/radiation effects , Ultraviolet Rays , Microscopy, Atomic Force
SELECTION OF CITATIONS
SEARCH DETAIL
...