Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 133(6): 983-999, 2017 06.
Article in English | MEDLINE | ID: mdl-28332092

ABSTRACT

A major concern associated with ZIKV infection is the increased incidence of microcephaly with frequent calcifications in infants born from infected mothers. To date, postmortem analysis of the central nervous system (CNS) in congenital infection is limited to individual reports or small series. We report a comprehensive neuropathological study in ten newborn babies infected with ZIKV during pregnancy, including the spinal cords and dorsal root ganglia (DRG), and also muscle, pituitaries, eye, systemic organs, and placentas. Using in situ hybridization (ISH) and electron microscopy, we investigated the role of direct viral infection in the pathogenesis of the lesions. Nine women had Zika symptoms between the 4th and 18th and one in the 28th gestational week. Two babies were born at 32, one at 34 and 36 weeks each and six at term. The cephalic perimeter was reduced in four, and normal or enlarged in six patients, although the brain weights were lower than expected. All had arthrogryposis, except the patient infected at 28 weeks gestation. We defined three patterns of CNS lesions, with different patterns of destructive, calcification, hypoplasia, and migration disturbances. Ventriculomegaly was severe in the first pattern due to midbrain damage with aqueduct stenosis/distortion. The second pattern had small brains and mild/moderate (ex-vacuo) ventriculomegaly. The third pattern, a well-formed brain with mild calcification, coincided with late infection. The absence of descending fibres resulted in hypoplastic basis pontis, pyramids, and cortico-spinal tracts. Spinal motor cell loss explained the intrauterine akinesia, arthrogryposis, and neurogenic muscle atrophy. DRG, dorsal nerve roots, and columns were normal. Lympho-histiocytic inflammation was mild. ISH showed meningeal, germinal matrix, and neocortical infection, consistent with neural progenitors death leading to proliferation and migration disorders. A secondary ischemic process may explain the destructive lesions. In conclusion, we characterized the destructive and malformative consequences of ZIKV in the nervous system, as reflected in the topography and severity of lesions, anatomic localization of the virus, and timing of infection during gestation. Our findings indicate a developmental vulnerability of the immature CNS, and shed light on possible mechanisms of brain injury of this newly recognized public health threat.


Subject(s)
Brain/pathology , Microcephaly/pathology , Pregnancy Complications, Infectious , Spinal Cord/pathology , Zika Virus Infection/congenital , Zika Virus Infection/pathology , Adolescent , Adult , Brain/diagnostic imaging , Eye/diagnostic imaging , Eye/pathology , Female , Humans , Infant, Newborn , Male , Microcephaly/diagnostic imaging , Microcephaly/etiology , Muscle, Skeletal/pathology , Pituitary Gland/diagnostic imaging , Pituitary Gland/pathology , Pregnancy , Spinal Cord/diagnostic imaging , Young Adult , Zika Virus Infection/complications , Zika Virus Infection/diagnostic imaging
2.
Ann Neurol ; 81(1): 152-156, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27977881

ABSTRACT

Recent advances in the understanding of neuropathogenesis associated with Zika virus (ZIKV) infection has led to descriptions of neonatal microcephaly cases. However, none of these reports have evaluated the humoral response during ZIKV infection. We report here polyfunctional immune activation associated with increased interferon-gamma-inducible protein 10, interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), monocyte chemoattractive protein 1 (MCP-1), and granulocyte colony-stimulating factor (G-CSF) levels in the amniotic fluid of ZIKV-positive pregnant women with neonatal microcephaly. These cytokines have been associated not only with neuronal damage, but also with differentiation and proliferation of neural progenitor cells. Our results suggested that the immune activation caused by ZIKV infection in the uterine environment could also interfere with fetal development. ANN NEUROL 2017;81:152-156.


Subject(s)
Amniotic Fluid/immunology , Microcephaly/etiology , Microcephaly/immunology , Zika Virus Infection/complications , Zika Virus Infection/immunology , Adolescent , Adult , Amniotic Fluid/metabolism , Case-Control Studies , Chemokine CCL2/metabolism , Chemokine CXCL10/metabolism , Female , Granulocyte Colony-Stimulating Factor/metabolism , Humans , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Microcephaly/metabolism , Microcephaly/pathology , Neural Stem Cells/cytology , Neural Stem Cells/immunology , Neural Stem Cells/metabolism , Pregnancy , Vascular Endothelial Growth Factor A/metabolism , Young Adult , Zika Virus Infection/metabolism , Zika Virus Infection/pathology
3.
JAMA Neurol ; 73(12): 1407-1416, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27695855

ABSTRACT

IMPORTANCE: Recent studies have reported an increase in the number of fetuses and neonates with microcephaly whose mothers were infected with the Zika virus (ZIKV) during pregnancy. To our knowledge, most reports to date have focused on select aspects of the maternal or fetal infection and fetal effects. OBJECTIVE: To describe the prenatal evolution and perinatal outcomes of 11 neonates who had developmental abnormalities and neurological damage associated with ZIKV infection in Brazil. DESIGN, SETTING, AND PARTICIPANTS: We observed 11 infants with congenital ZIKV infection from gestation to 6 months in the state of Paraíba, Brazil. Ten of 11 women included in this study presented with symptoms of ZIKV infection during the first half of pregnancy, and all 11 had laboratory evidence of the infection in several tissues by serology or polymerase chain reaction. Brain damage was confirmed through intrauterine ultrasonography and was complemented by magnetic resonance imaging. Histopathological analysis was performed on the placenta and brain tissue from infants who died. The ZIKV genome was investigated in several tissues and sequenced for further phylogenetic analysis. MAIN OUTCOMES AND MEASURES: Description of the major lesions caused by ZIKV congenital infection. RESULTS: Of the 11 infants, 7 (63.6%) were female, and the median (SD) maternal age at delivery was 25 (6) years. Three of 11 neonates died, giving a perinatal mortality rate of 27.3%. The median (SD) cephalic perimeter at birth was 31 (3) cm, a value lower than the limit to consider a microcephaly case. In all patients, neurological impairments were identified, including microcephaly, a reduction in cerebral volume, ventriculomegaly, cerebellar hypoplasia, lissencephaly with hydrocephalus, and fetal akinesia deformation sequence (ie, arthrogryposis). Results of limited testing for other causes of microcephaly, such as genetic disorders and viral and bacterial infections, were negative, and the ZIKV genome was found in both maternal and neonatal tissues (eg, amniotic fluid, cord blood, placenta, and brain). Phylogenetic analyses showed an intrahost virus variation with some polymorphisms in envelope genes associated with different tissues. CONCLUSIONS AND RELEVANCE: Combined findings from clinical, laboratory, imaging, and pathological examinations provided a more complete picture of the severe damage and developmental abnormalities caused by ZIKV infection than has been previously reported. The term congenital Zika syndrome is preferable to refer to these cases, as microcephaly is just one of the clinical signs of this congenital malformation disorder.


Subject(s)
Arthrogryposis/etiology , Hydrocephalus/etiology , Nervous System Malformations/etiology , Pregnancy Complications, Infectious , Zika Virus Infection/complications , Zika Virus , Abnormalities, Multiple/etiology , Brazil , Cerebellum/pathology , Cerebrum/pathology , Female , Follow-Up Studies , Humans , Infant , Infant Death , Infant, Newborn , Lissencephaly/etiology , Male , Microcephaly/etiology , Perinatal Death , Pregnancy , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus/pathogenicity , Zika Virus Infection/congenital
SELECTION OF CITATIONS
SEARCH DETAIL
...