Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 25(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291367

ABSTRACT

The dioctadecyldimethylammonium bromide (DODAB) is a double-chained cationic lipid with potent bactericide and fungistatic activities; however, its toxicity on protozoan parasites is still unknown. Here, we show the antileishmanial activity of DODAB nano-sized cationic bilayer fragments on stationary-phase promastigotes and amastigotes of Leishmania amazonensis, the causative agent of cutaneous leishmaniasis. Upon treatment with DODAB, we analyzed the parasite surface zeta-potential, parasite viability, cellular structural modifications, and intracellular proliferation. The DODAB cytotoxic effect was dose-dependent, with a median effective concentration (EC50) of 25 µM for both life-cycle stages, comparable to the reported data for bacteria and fungi. The treatment with DODAB changed the membrane zeta-potential from negative to positive, compromised the parasite's morphology, affected the cell size regulation, caused a loss of intracellular organelles, and probably dysregulated the plasma membrane permeability without membrane disruption. Moreover, the parasites that survived after treatment induced small parasitophorous vacuoles and failed to proliferate inside macrophages. In conclusion, DODAB displayed antileishmanial activity, and it remains to be elucidated how DODAB acts on the protozoan membrane. Understanding this mechanism can provide insights into the development of new parasite-control strategies.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cations/chemistry , Leishmania mexicana/drug effects , Nanoparticles/chemistry , Quaternary Ammonium Compounds/chemistry , Animals , Leishmaniasis, Cutaneous/drug therapy , Life Cycle Stages/drug effects , Lipids/chemistry , Macrophages/drug effects , Mice , Mice, Inbred C57BL
2.
Molecules ; 25(11)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486239

ABSTRACT

High genetic and phenotypic variability between Leishmania species and strains within species make the development of broad-spectrum antileishmanial drugs challenging. Thus, screening panels consisting of several diverse Leishmania species can be useful in enabling compound prioritization based on their spectrum of activity. In this study, a robust and reproducible high content assay was developed, and 1280 small molecules were simultaneously screened against clinically relevant cutaneous and visceral species: L. amazonensis, L. braziliensis, and L. donovani. The assay is based on THP-1 macrophages infected with stationary phase promastigotes and posterior evaluation of both compound antileishmanial activity and host cell toxicity. The profile of compound activity was species-specific, and out of 51 active compounds, only 14 presented broad-spectrum activity against the three species, with activities ranging from 52% to 100%. Notably, the compounds CB1954, Clomipramine, Maprotiline, Protriptyline, and ML-9 presented pan-leishmanial activity, with efficacy greater than 70%. The results highlight the reduced number of compound classes with pan-leishmanial activity that might be available from diversity libraries, emphasizing the need to screen active compounds against a panel of species and strains. The assay reported here can be adapted to virtually any Leishmania species without the need for genetic modification of parasites, providing the basis for the discovery of broad spectrum anti-leishmanial agents.


Subject(s)
Leishmaniasis/drug therapy , Animals , Antiprotozoal Agents/therapeutic use , Drug Evaluation, Preclinical , Humans , Leishmania/drug effects , Leishmania/pathogenicity , Leishmaniasis, Visceral/drug therapy , Maprotiline/chemistry , Mice , Protriptyline/chemistry , Species Specificity , THP-1 Cells
3.
Int J Parasitol Drugs Drug Resist ; 8(3): 430-439, 2018 12.
Article in English | MEDLINE | ID: mdl-30293058

ABSTRACT

Tritryps diseases are devastating parasitic neglected infections caused by Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei subspecies. Together, these parasites affect more than 30 million people worldwide and cause high mortality and morbidity. Leishmaniasis comprises a complex group of diseases with clinical manifestation ranging from cutaneous lesions to systemic visceral damage. Antimonials, the first-choice drugs used to treat leishmaniasis, lead to high toxicity and carry significant contraindications limiting its use. Drug-resistant parasite strains are also a matter for increasing concern, especially in areas with very limited resources. The current scenario calls for novel and/or improvement of existing therapeutics as key research priorities in the field. Although several studies have shown advances in drug discovery towards leishmaniasis in recent years, key knowledge gaps in drug discovery pipelines still need to be addressed. In this review we discuss not only scientific and non-scientific bottlenecks in drug development, but also the central role of public-private partnerships for a successful campaign for novel treatment options against this devastating disease.


Subject(s)
Drug Discovery/methods , Leishmania/drug effects , Leishmaniasis/drug therapy , Animals , Antiprotozoal Agents/adverse effects , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/toxicity , Chagas Disease/drug therapy , Drug Delivery Systems/methods , Drug Delivery Systems/statistics & numerical data , Drug Discovery/legislation & jurisprudence , Drug Discovery/statistics & numerical data , Drug Discovery/trends , Humans , Neglected Diseases/drug therapy , Neglected Diseases/parasitology , Public-Private Sector Partnerships , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects , Trypanosomatina/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL