Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(10): e0258473, 2021.
Article in English | MEDLINE | ID: mdl-34673808

ABSTRACT

Spatial trends represent an obstacle to genetic evaluation in maize breeding. Spatial analyses can correct spatial trends, which allow for an increase in selective accuracy. The objective of this study was to compare the spatial (SPA) and non-spatial (NSPA) models in diallel multi-environment trial analyses in maize breeding. The trials consisted of 78 inter-populational maize hybrids, tested in four environments (E1, E2, E3, and E4), with three replications, under a randomized complete block design. The SPA models accounted for autocorrelation among rows and columns by the inclusion of first-order autoregressive matrices (AR1 ⊗ AR1). Then, the rows and columns factors were included in the fixed and random parts of the model. Based on the Bayesian information criteria, the SPA models were used to analyze trials E3 and E4, while the NSPA model was used for analyzing trials E1 and E2. In the joint analysis, the compound symmetry structure for the genotypic effects presented the best fit. The likelihood ratio test showed that some effects changed regarding significance when the SPA and NSPA models were used. In addition, the heritability, selective accuracy, and selection gain were higher when the SPA models were used. This indicates the power of the SPA model in dealing with spatial trends. The SPA model exhibits higher reliability values and is recommended to be incorporated in the standard procedure of genetic evaluation in maize breeding. The analyses bring the parents 2, 10 and 12, as potential parents in this microregion.


Subject(s)
Zea mays , Plant Breeding
2.
PLoS One ; 15(11): e0242705, 2020.
Article in English | MEDLINE | ID: mdl-33216796

ABSTRACT

An efficient and informative statistical method to analyze genotype-by-environment interaction (GxE) is needed in maize breeding programs. Thus, the objective of this study was to compare the effectiveness of multiple-trait models (MTM), random regression models (RRM), and compound symmetry models (CSM) in the analysis of multi-environment trials (MET) in maize breeding. For this, a data set with 84 maize hybrids evaluated across four environments for the trait grain yield (GY) was used. Variance components were estimated by restricted maximum likelihood (REML), and genetic values were predicted by best linear unbiased prediction (BLUP). The best fit MTM, RRM, and CSM were identified by the Akaike information criterion (AIC), and the significance of the genetic effects were tested using the likelihood ratio test (LRT). Genetic gains were predicted considering four selection intensities (5, 10, 15, and 20 hybrids). The selected MTM, RRM, and CSM models fit heterogeneous residuals. Moreover, for RRM the genetic effects were modeled by Legendre polynomials of order two. Genetic variability between maize hybrids were assessed for GY. In general, estimates of broad-sense heritability, selective accuracy, and predicted selection gains were slightly higher when obtained using MTM and RRM. Thus, considering the criterion of parsimony and the possibility of predicting genetic values of hybrids for untested environments, RRM is a preferential approach for analyzing MET in maize breeding.


Subject(s)
Gene-Environment Interaction , Models, Genetic , Multifactorial Inheritance , Plant Breeding , Quantitative Trait Loci , Zea mays/genetics , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...