Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 6(1): 122, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349551

ABSTRACT

Luminescent lanthanide complexes containing effective photosensitizers are promising materials for use in displays and sensors. The photosensitizer design strategy has been studied for developing the lanthanide-based luminophores. Herein, we demonstrate a photosensitizer design using dinuclear luminescent lanthanide complex, which exhibits thermally-assisted photosensitized emission. The lanthanide complex comprised Tb(III) ions, six tetramethylheptanedionates, and phosphine oxide bridge containing a phenanthrene frameworks. The phenanthrene ligand and Tb(III) ions are the energy donor (photosensitizer) and acceptor (emission center) parts, respectively. The energy-donating level of the ligand (lowest excited triplet (T1) level = 19,850 cm-1) is lower than the emitting level of the Tb(III) ion (5D4 level = 20,500 cm-1). The long-lived T1 state of the energy-donating ligands promoted an efficient thermally-assisted photosensitized emission of the Tb(III) acceptor (5D4 level), resulting in a pure-green colored emission with a high photosensitized emission quantum yield (73%).

2.
Nat Commun ; 13(1): 3660, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790726

ABSTRACT

Soft-crystals are defined as flexible molecular solids with highly ordered structures and have attracted attention in molecular sensing materials based on external triggers and environments. Here, we show the soft-crystal copolymerization of green-luminescent Tb(III) and yellow-luminescent Dy(III) coordination centers. Soft-crystal polymerization is achieved via transformation of monomeric dinuclear complexes and polymeric structures with respect to coordination number and geometry. The structural transformation is characterized using single-crystal and powder X-ray diffraction. The connected Tb(III) crystal-Dy(III) crystal show photon energy transfer from the Dy(III) centre to the Tb(III) centre under blue light excitation (selective Dy(III) centre excitation: 460 ± 10 nm). The activation energy of the energy transfer is estimated using the temperature-dependent emission lifetimes and emission quantum yields, and time-dependent density functional theory (B3LYP) calculations. Luminescence-conductive polymers, photonic molecular trains, are successfully prepared via soft-crystal polymerization on crystal media with remarkable long-range energy migration.

3.
Dalton Trans ; 50(42): 14978-14984, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34610080

ABSTRACT

Transition metal complexes provide photofunctional properties through the charge transfer excited states of their metal ion and organic ligand components. Recently, there are increasing reports on the charge transfer excited states of the ligand (π)- and 4f-orbitals of lanthanide complexes, where the latter are shielded by filled 5s2 and 5p6 orbitals. This area of research is relatively unestablished; thus, the study of photo-excited organic-lanthanide charge transfer would lead to the construction of next-generation photofunctional metal complexes. In this review, we summarize the latest research progress in photofunctional materials using the charge transfer excited states of lanthanide complexes, and discuss the photophysical/theoretical analyses of these charge transfer excited states.

4.
Chemistry ; 27(58): 14438-14443, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34409670

ABSTRACT

In this study, we have demonstrated a two-legged, upright molecular design method for monochromatic and bright red luminescent LnIII -silica nanomaterials. A novel EuIII -silica hybrid nanoparticle was developed by using a doubly binding TPPO-Si(OEt)3 (TPPO: triphenyl phosphine oxide) linker. The TPPO-Si(OEt)3 was confirmed by 1 H, 31 P, 29 Si NMR spectroscopy and single-crystal X-ray analysis. Luminescent Eu(hfa)3 and Eu(tfc)3 moieties (hfa: hexafluoroacetylacetonate, tfc: 3-(trifluoromethylhydroxymethylene)camphorate) were fixed onto TPPO-Si(OEt)3 -modified silica nanoparticles, producing Eu(hfa)3 (TPPO-Si)2 -SiO2 and Eu(tfc)3 (TPPO-Si)2 -SiO2 , respectively. Eu(hfa)3 (TPPO-Si)2 -SiO2 exhibited the higher intrinsic luminescence quantum yield (93 %) and longer emission lifetime (0.98 ms), which is much larger than those of previously reported EuIII -based hybrid materials. Eu(tfc)3 (TPPO-Si)2 -SiO2 showed an extra-large intrinsic emission quantum yield (54 %), although the emission quantum yield for the precursor Eu(tfc)3 (TPPO-Si(OEt)3 )2 was found to be 39 %. These results confirmed that the TPPO-Si(OEt)3 linker is a promising candidate for development of EuIII -based luminescent materials.


Subject(s)
Luminescence , Nanoparticles , Europium , Silicon Dioxide
5.
J Phys Chem A ; 125(1): 209-217, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33400867

ABSTRACT

Photophysical properties of europium (Eu(III)) complexes are affected by ligand-to-metal charge transfer (LMCT) states. Two luminescent Eu(III) complexes with three tetramethylheptadionates (tmh) and pyridine (py), [Eu(tmh)3(py)1] (seven-coordinated monocapped-octahedral structure) and [Eu(tmh)3(py)2] (eight-coordinated square antiprismatic structure), were synthesized for geometrical-induced LMCT level control. Distances between Eu(III) and oxygen atoms of tmh ligands were estimated using single-crystal X-ray analyses. The contribution percentages of π-4f mixing in HOMO and LUMO at the optimized structure in the ground state were calculated using DFT (LC-BLYP). The Eu-O distances and their π-4f mixed orbitals affect the energy level of LMCT states in Eu(III) complexes. The LMCT energy level of an eight-coordinated Eu(III) complex was higher than that of a seven-coordinated Eu(III) complex. The energy transfer processes between LMCT and Eu(III) ion were investigated using temperature-dependent and time-resolved emission lifetime measurements of 5D0 → 7FJ transitions of Eu(III) ions. In this study, the LMCT-dependent energy transfer processes of seven- and eight-coordinated Eu(III) complexes are demonstrated for the first time.

6.
Chemistry ; 27(1): 264-269, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-32618063

ABSTRACT

A design for an effective molecular luminescent thermometer based on long-range electronic coupling in lanthanide coordination polymers is proposed. The coordination polymers are composed of lanthanide ions EuIII and GdIII , three anionic ligands (hexafluoroacetylacetonate), and a chrysene-based phosphine oxide bridges (6,12-bis(diphenylphosphoryl)chrysene). The zig-zag orientation of the single polymer chains induces the formation of packed coordination structures containing multiple sites for CH-F intermolecular interactions, resulting in thermal stability above 350 °C. The electronic coupling is controlled by changing the concentration of the GdIII ion in the EuIII -GdIII polymer. The emission quantum yield and the maximum relative temperature sensitivity (Sm ) of emission lifetimes for the EuIII -GdIII polymer (Eu:Gd=1:1, Φtot =52 %, Sm =3.73 % K-1 ) were higher than those for the pure EuIII coordination polymer (Φtot =36 %, Sm =2.70 % K-1 ), respectively. Enhanced temperature sensing properties are caused by control of long-range electronic coupling based on phosphine oxide with chrysene framework.

7.
Inorg Chem ; 57(23): 14653-14659, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30422642

ABSTRACT

Novel Eu(III) coordination polymers with furan-based bridging ligands [Eu(hfa)3(Cy)] n and [Eu(hfa)3(Tol)] n (hfa: hexafluoroacetylacetonato, Cy: 2,5-bis(dicyclohexylphosphoryl)furan), Tol: 2,5-bis(di- p-tolylphosphoryl)furan) are reported. The rigidity of assembly steric structures was controlled by intermolecular interactions through the side groups in bridging ligands. They exhibited one of the best performances (thermal stability above 320 °C and external photoluminescence quantum yields of up to 71%) among reported lanthanide(III) compounds. The triboluminescence activity was demonstrated to be dependent on the mechanical stability of the coordination polymers, which was proportional to the number of hydrogen atoms in the side groups. The second example of a large TL/PL spectral difference in [Tb,Eu(hfa)3(Tol)] n also revealed discrete photophysical processes under the conditions of grinding and UV irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...