Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Acta Histochem ; 123(8): 151799, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34656827

ABSTRACT

Bacillus thuringiensis insecticides have been considered safe, being an alternative to the use of synthetic insecticides. However, studies have shown the effects of Bt Cry toxins on various organs, compromising their functions. The objective of this work was to test whether the administration of biological insecticides based on B. thuringiensis in pregnant rats will cause histopathological changes in the liver and kidneys, as well as in the levels of toxicity biomarkers, of their puppies in adulthood. Twenty rats, 90 days old, were used, divided into four groups: GC - Pregnant rats, GX - Pregnant rats that received XenTari®, GDi - Pregnant rats that received Dipel® and GDe - Pregnant rats that received deltamethrin. Insecticides were administered by gavage at a dosage of 1 mg/100 g/day (GX and GDi), and 2 mg/Kg/day (GDe) during pregnancy and lactation. In the animals of the groups whose matrices received the insecticides, there was a reduction in the levels of the biomarkers of toxicity alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea and creatinine, about the control group. The biological insecticides promoted histopathological changes in the liver, with the presence of portal vein, centrilobular and sinusoidal capillaries congestion, and in the kidney, presence of cortical congestion and reduction of the subcapsular space. Histochemical evaluation in the liver demonstrated a significant reduction in glycogen in the groups that received insecticides when compared to the control group, whereas for collagen fibers in both the liver and the kidneys, no differences were observed between the experimental groups. The morphometry of the liver revealed a significant reduction in the lobular parenchyma and an increase in the non-lobular parenchyma, and in the kidney, there was a reduction in the diameter and volume of the glomerulus and Bowman's capsule of the animals whose matrices received both biological and synthetic insecticides. Thus, it is concluded that the biological insecticides XenTari® and Dipel® in sublethal doses in pregnant rats promote changes in the liver and kidney of the offspring similar to the insecticide deltamethrin, which extend into adulthood.


Subject(s)
Bacillus thuringiensis Toxins/toxicity , Endotoxins/toxicity , Hemolysin Proteins/toxicity , Insecticides/toxicity , Kidney , Lactation/metabolism , Liver , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects , Animals , Female , Kidney/growth & development , Kidney/pathology , Liver/growth & development , Liver/pathology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Wistar
2.
Chem Biol Interact ; 327: 109183, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32554039

ABSTRACT

The present study analyzed whether melatonin could mediate the expression of VEGF, IL-6 and TNF-α, as well as the apoptotic index in rats with diabetic retinopathy. Fifty Wistar albino rats were divided into the following groups: GC: rats without induction of diabetes by streptozotocin; GD: rats induced to diabetes by streptozotocin and treated with placebo; GDM: rats induced to diabetes by streptozotocin and after confirmation treated with melatonin at a dose of 10 mg/kg for 20 days; GDMS: rats induced to diabetes by streptozotocin and treated simultaneously with melatonin at a dosage of 10 mg/kg for 20 days; GDI: rats induced to diabetes by streptozotocin and after confirmation treated with insulin for 20 days. Diabetes was induced by intraperitoneal injections of streptozotocin (60 mg/kg), and insulin (5 U/day) was administered subcutaneously. For apoptosis TUNEL was used, while for the analysis of VEGF, IL-6 and TNF-α. The results showed that the groups that were treated with melatonin decreased the expression of cytokines and VEGF, in addition to apoptosis. Thus, it is concluded that melatonin can regulate the expression of these factors by improving the condition of the retina in diabetic retinopathy.


Subject(s)
Apoptosis/drug effects , Diabetic Retinopathy/drug therapy , Interleukin-6/metabolism , Melatonin/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Diabetes Mellitus, Experimental/complications , Diabetic Retinopathy/etiology , Diabetic Retinopathy/pathology , Rats, Wistar , Retina/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...