Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Crohns Colitis ; 18(1): 65-74, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-37522878

ABSTRACT

BACKGROUND: Both vedolizumab and ustekinumab are approved for the management of Crohn's disease [CD]. Data on which one would be the most beneficial option when anti-tumour necrosis factor [anti-TNF] agents fail are limited. AIMS: To compare the durability, effectiveness, and safety of vedolizumab and ustekinumab after anti-TNF failure or intolerance in CD. METHODS: CD patients from the ENEIDA registry who received vedolizumab or ustekinumab after anti-TNF failure or intolerance were included. Durability and effectiveness were evaluated in both the short and the long term. Effectiveness was defined according to the Harvey-Bradshaw index [HBI]. The safety profile was compared between the two treatments. The propensity score was calculated by the inverse probability weighting method to balance confounder factors. RESULTS: A total of 835 patients from 30 centres were included, 207 treated with vedolizumab and 628 with ustekinumab. Dose intensification was performed in 295 patients. Vedolizumab [vs ustekinumab] was associated with a higher risk of treatment discontinuation (hazard ratio [HR] 2.55, 95% confidence interval [CI]: 2.02-3.21), adjusted by corticosteroids at baseline [HR 1.27; 95% CI: 1.00-1.62], moderate-severe activity in HBI [HR 1.79; 95% CI: 1.20-2.48], and high levels of C-reactive protein at baseline [HR 1.06; 95% CI: 1.02-1.10]. The inverse probability weighting method confirmed these results. Clinical response, remission, and corticosteroid-free clinical remission were higher with ustekinumab than with vedolizumab. Both drugs had a low risk of adverse events with no differences between them. CONCLUSION: In CD patients who have failed anti-TNF agents, ustekinumab seems to be superior to vedolizumab in terms of durability and effectiveness in clinical practice. The safety profile is good and similar for both treatments.


Subject(s)
Antibodies, Monoclonal, Humanized , Crohn Disease , Ustekinumab , Humans , Ustekinumab/therapeutic use , Crohn Disease/drug therapy , Tumor Necrosis Factor Inhibitors/therapeutic use , Remission Induction , Tumor Necrosis Factor-alpha , Registries , Treatment Outcome , Retrospective Studies
2.
J Exp Bot ; 74(5): 1564-1578, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36111947

ABSTRACT

Potato spindle tuber viroid (PSTVd) is a plant pathogen naturally infecting economically important crops such as tomato (Solanum lycopersicum). Here, we aimed to engineer tomato plants highly resistant to PSTVd and developed several S. lycopersicum lines expressing an artificial microRNA (amiRNA) against PSTVd (amiR-PSTVd). Infectivity assays revealed that amiR-PSTVd-expressing lines were not resistant but instead hypersusceptible to the viroid. A combination of phenotypic, molecular, and metabolic analyses of amiRNA-expressing lines non-inoculated with the viroid revealed that amiR-PSTVd was accidentally silencing the tomato STEROL GLYCOSYLTRANSFERASE 1 (SlSGT1) gene, which caused late developmental and reproductive defects such as leaf epinasty, dwarfism, or reduced fruit size. Importantly, two independent transgenic tomato lines each expressing a different amiRNA specifically designed to target SlSGT1 were also hypersusceptible to PSTVd, thus demonstrating that down-regulation of SlSGT1 was responsible for the viroid-hypersusceptibility phenotype. Our results highlight the role of sterol glycosyltransferases in proper plant development and indicate that the imbalance of sterol glycosylation levels favors viroid infection, most likely by facilitating viroid movement.


Subject(s)
MicroRNAs , Solanum lycopersicum , Solanum tuberosum , Viroids , Viroids/genetics , Solanum lycopersicum/genetics , Down-Regulation , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , MicroRNAs/genetics , Plant Diseases/genetics , Solanum tuberosum/genetics , RNA, Viral/genetics
3.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36260504

ABSTRACT

In the framework of the research project called fitomatics, we have isolated and characterized a bacterial plant-endophyte from the rhizomes of Iris germanica, hereafter referred to as strain FIT81T. The bacterium is Gram negative, rod-shaped with lophotrichous flagella, and catalase- and oxidase-positive. The optimal growth temperature of strain FIT81T is 28 °C, although it can grow within a temperature range of 4-32 °C. The pH growth tolerance ranges between pH 5 and 10, and it tolerates 4% (w/v) NaCl. A 16S rRNA phylogenetic analysis positioned strain FIT81T within the genus Pseudomonas, and multilocus sequence analysis revealed that Pseudomonas gozinkensis IzPS32dT, Pseudomonas glycinae MS586T, Pseudomonas allokribbensis IzPS23T, 'Pseudomonas kribbensis' 46-2 and Pseudomonas koreensis PS9-14T are the top five most closely related species, which were selected for further genome-to-genome comparisons, as well as for physiological and chemotaxonomic characterization. The genome size of strain FIT81T is 6 492 796 base-pairs long, with 60.6 mol% of G+C content. Average nucleotide identity and digital DNA-DNA hybridization analyses yielded values of 93.6 and 56.1%, respectively, when the FIT81T genome was compared to that of the closest type strain P. gozinkensis IzPS32dT. Taken together, the obtained genomic, physiologic and chemotaxonomic data indicate that strain FIT81T is different from its closest relative species, which lead us to suggest that it is a novel species to be included in the list of type strains with the name Pseudomonas fitomaticsae sp. nov. (FIT81T=CECT 30374T=DSM 112699T).


Subject(s)
Sodium Chloride , Bacterial Typing Techniques , Base Composition , Catalase/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleotides , Phylogeny , Pseudomonas , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain
4.
Front Plant Sci ; 13: 984100, 2022.
Article in English | MEDLINE | ID: mdl-36247562

ABSTRACT

Steryl esters (SE) are stored in cytoplasmic lipid droplets and serve as a reservoir of sterols that helps to maintain free sterols (FS) homeostasis in cell membranes throughout plant growth and development, and provides the FS needed to meet the high demand of these key plasma membrane components during rapid plant organ growth and expansion. SE are also involved in the recycling of sterols and fatty acids released from membranes during plant tissues senescence. SE are synthesized by sterol acyltransferases, which catalyze the transfer of long-chain fatty acid groups to the hydroxyl group at C3 position of FS. Depending on the donor substrate, these enzymes are called acyl-CoA:sterol acyltransferases (ASAT), when the substrate is a long-chain acyl-CoA, and phospholipid:sterol acyltransferases (PSAT), which use a phospholipid as a donor substrate. We have recently identified and preliminary characterized the tomato (Solanum lycopersicum cv. Micro-Tom) SlASAT1 and SlPSAT1 enzymes. To gain further insight into the biological role of these enzymes and SE biosynthesis in tomato, we generated and characterized CRISPR/Cas9 single knock-out mutants lacking SlPSAT1 (slpsat1) and SlASAT1 (slasat1), as well as the double mutant slpsat1 x slasat1. Analysis of FS and SE profiles in seeds and leaves of the single and double mutants revealed a strong depletion of SE in slpsat1, that was even more pronounced in the slpsat1 x slasat1 mutant, while an increase of SE levels was observed in slasat1. Moreover, SlPSAT1 and SlASAT1 inactivation affected in different ways several important cellular and physiological processes, like leaf lipid bo1dies formation, seed germination speed, leaf senescence, and the plant size. Altogether, our results indicate that SlPSAT1 has a predominant role in tomato SE biosynthesis while SlASAT1 would mainly regulate the flux of the sterol pathway. It is also worth to mention that some of the metabolic and physiological responses in the tomato mutants lacking functional SlPSAT1 or SlASAT1 are different from those previously reported in Arabidopsis, being remarkable the synergistic effect of SlASAT1 inactivation in the absence of a functional SlPSAT1 on the early germination and premature senescence phenotypes.

6.
Plant Cell Rep ; 41(2): 281-291, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34665312

ABSTRACT

The genome of most plant viruses consists of a single positive-strand of RNA (+ ssRNA). Successful replication of these viruses is fully dependent on the endomembrane system of the infected cells, which experiences a massive proliferation and a profound reshaping that enables assembly of the macromolecular complexes where virus genome replication occurs. Assembly of these viral replicase complexes (VRCs) requires a highly orchestrated interplay of multiple virus and co-opted host cell factors to create an optimal microenvironment for efficient assembly and functioning of the virus genome replication machinery. It is now widely accepted that VRC formation involves the recruitment of high levels of sterols, but the specific role of these essential components of cell membranes and the precise molecular mechanisms underlying sterol enrichment at VRCs are still poorly known. In this review, we intend to summarize the most relevant knowledge on the role of sterols in ( +)ssRNA virus replication and discuss the potential of manipulating the plant sterol pathway to help plants fight these infectious agents.


Subject(s)
Host-Pathogen Interactions/physiology , Phytosterols/metabolism , Plant Viruses/physiology , Plants/metabolism , Plants/virology , Cell Membrane/metabolism , Cell Membrane/virology , Genome, Viral , Plant Diseases/virology , Plant Viruses/pathogenicity , RNA Viruses/pathogenicity , RNA Viruses/physiology , Virus Replication
7.
BMC Plant Biol ; 21(1): 141, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33731007

ABSTRACT

BACKGROUND: Sterols are structural and functional components of eukaryotic cell membranes. Plants produce a complex mixture of sterols, among which ß-sitosterol, stigmasterol, campesterol, and cholesterol in some Solanaceae, are the most abundant species. Many reports have shown that the stigmasterol to ß-sitosterol ratio changes during plant development and in response to stresses, suggesting that it may play a role in the regulation of these processes. In tomato (Solanum lycopersicum), changes in the stigmasterol to ß-sitosterol ratio correlate with the induction of the only gene encoding sterol C22-desaturase (C22DES), the enzyme specifically involved in the conversion of ß-sitosterol to stigmasterol. However, despite the biological interest of this enzyme, there is still a lack of knowledge about several relevant aspects related to its structure and function. RESULTS: In this study we report the subcellular localization of tomato C22DES in the endoplasmic reticulum (ER) based on confocal fluorescence microscopy and cell fractionation analyses. Modeling studies have also revealed that C22DES consists of two well-differentiated domains: a single N-terminal transmembrane-helix domain (TMH) anchored in the ER-membrane and a globular (or catalytic) domain that is oriented towards the cytosol. Although TMH is sufficient for the targeting and retention of the enzyme in the ER, the globular domain may also interact and be retained in the ER in the absence of the N-terminal transmembrane domain. The observation that a truncated version of C22DES lacking the TMH is enzymatically inactive revealed that the N-terminal membrane domain is essential for enzyme activity. The in silico analysis of the TMH region of plant C22DES revealed several structural features that could be involved in substrate recognition and binding. CONCLUSIONS: Overall, this study contributes to expand the current knowledge on the structure and function of plant C22DES and to unveil novel aspects related to plant sterol metabolism.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Solanum lycopersicum/enzymology , Amino Acid Motifs , Endoplasmic Reticulum/enzymology , Models, Molecular , Phytosterols/metabolism , Protein Domains , Stigmasterol/metabolism , Structure-Activity Relationship
8.
J Exp Bot ; 71(1): 258-271, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31504760

ABSTRACT

Pelargonium graveolens is a wild predecessor to rose-scented geranium hybrids prized for their essential oils used as fragrances and flavorings. However, little is known about their biosynthesis. Here we present metabolic evidence that at least two distinct monoterpene biosynthetic pathways contribute to their volatile profiles, namely, cyclic p-menthanes such as (-)-isomenthone and acyclic monoterpene alcohols such as geraniol and (-)-citronellol and their derivatives (referred to here as citronelloid monoterpenes). We established their common origin via the 2C-methyl-d-erythritol-4-phosphate pathway but found no indication these pathways share common intermediates beyond geranyl diphosphate. Untargeted volatile profiling of 22 seed-grown P. graveolens lines demonstrated distinct chemotypes that preferentially accumulate (-)-isomenthone, geraniol, or (-)-citronellol along with approximately 85 minor volatile products. Whole plant 13CO2 isotopic labeling performed under physiological conditions permitted us to measure the in vivo rates of monoterpenoid accumulation in these lines and quantify differences in metabolic modes between chemotypes. We further determined that p-menthane monoterpenoids in Pelargonium are likely synthesized from (+)-limonene via (+)-piperitone rather than (+)-pulegone. Exploitation of this natural population enabled a detailed dissection of the relative rates of competing p-menthane and citronelloid pathways in this species, providing real time rates of monoterpene accumulation in glandular trichomes.


Subject(s)
Monoterpenes/metabolism , Pelargonium/metabolism , Metabolic Networks and Pathways
9.
Front Plant Sci ; 10: 1162, 2019.
Article in English | MEDLINE | ID: mdl-31611892

ABSTRACT

Free and glycosylated sterols are both structural components of the plasma membrane that regulate their biophysical properties and consequently different plasma membrane-associated processes such as plant adaptation to stress or signaling. Several reports relate changes in glycosylated sterols levels with the plant response to abiotic stress, but the information about the role of these compounds in the response to biotic stress is scarce. In this work, we have studied the response to the necrotrophic fungus Botrytis cinerea in an Arabidopsis mutant that is severely impaired in steryl glycosides biosynthesis due to the inactivation of the two sterol glucosyltransferases (UGT80A2 and UGT80B1) reported in this plant. This mutant exhibits enhanced resistance against B. cinerea when compared to wild-type plants, which correlates with increased levels of jasmonic acid (JA) and up-regulation of two marker genes (PDF1.2 and PR4) of the ERF branch of the JA signaling pathway. Upon B. cinerea infection, the ugt80A2;B1 double mutant also accumulates higher levels of camalexin, the major Arabidopsis phytoalexin, than wild-type plants. Camalexin accumulation correlates with enhanced transcript levels of several cytochrome P450 camalexin biosynthetic genes, as well as of their transcriptional regulators WRKY33, ANAC042, and MYB51, suggesting that the Botrytis-induced accumulation of camalexin is coordinately regulated at the transcriptional level. After fungus infection, the expression of genes involved in the indole glucosinolate biosynthesis is also up-regulated at a higher degree in the ugt80A2;B1 mutant than in wild-type plants. Altogether, the results of this study show that glycosylated sterols play an important role in the regulation of Arabidopsis response to B. cinerea infection and suggest that this occurs through signaling pathways involving the canonical stress-hormone JA and the tryptophan-derived secondary metabolites camalexin and possibly also indole glucosinolates.

10.
Front Plant Sci ; 9: 588, 2018.
Article in English | MEDLINE | ID: mdl-29868054

ABSTRACT

Steryl esters (SEs) serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs) in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT) and phospholipid:sterol acyltransferases (PSAT) depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1) have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom) orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs) while, in contrast to the endoplasmic reticulum (ER) localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM). The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together with their moderate transcriptional response to several stresses suggests a dual role of SlPSAT1 and SlASAT1 in tomato plant and fruit development and the adaptive responses to stress. Overall, this study contributes to enlarge the current knowledge on plant sterol acyltransferases and set the basis for further studies aimed at understanding the role of SE metabolism in tomato plant growth and development.

11.
Plant Sci ; 267: 112-123, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29362090

ABSTRACT

The sesquiterpene alcohol nerolidol, synthesized from farnesyl diphosphate (FDP), mediates plant-insect interactions across multiple trophic levels with major implications for pest management in agriculture. We compared nerolidol engineering strategies in tobacco using agroinfiltration to transiently express strawberry (Fragraria ananassa) linalool/nerolidol synthase (FaNES1) either at the endoplasmic reticulum (ER) or in the cytosol as a soluble protein. Using solid phase microextraction and gas chromatography-mass spectrometry (SPME-GCMS), we have determined that FaNES1 directed to the ER via fusion to the transmembrane domain of squalene synthase or hydroxymethylglutaryl - CoA reductase displayed significant improvements in terms of transcript levels, protein accumulation, and volatile production when compared to its cytosolic form. However, the highest levels of nerolidol production were observed when FaNES1 was fused to GFP and expressed in the cytosol. This SPME-GCMS method afforded a limit of detection and quantification of 1.54 and 5.13 pg, respectively. Nerolidol production levels, which ranged from 0.5 to 3.0 µg/g F.W., correlated more strongly to the accumulation of recombinant protein than transcript level, the former being highest in FaNES-GFP transfected plants. These results indicate that while the ER may represent an enriched source of FDP that can be exploited in metabolic engineering, protein accumulation is a better predictor of sesquiterpene production.


Subject(s)
Fragaria/genetics , Nicotiana/metabolism , Plant Proteins/genetics , Sesquiterpenes/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Stability , Nicotiana/genetics
12.
Plant Signal Behav ; 12(11): e1387708, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28990832

ABSTRACT

Isoprenoids comprise the largest class of natural compounds and are found in all kinds of organisms. In plants, they participate in both primary and specialized metabolism, playing essential roles in nearly all aspects of growth and development. The enormous diversity of this family of compounds is extensively exploited for biotechnological and biomedical applications as biomaterials, biofuels or drugs. Despite their variety of structures, all isoprenoids derive from the common C5 precursor isopentenyl diphosphate (IPP). Plants synthesize IPP through two different metabolic pathways, the mevalonic acid (MVA) and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways that operate in the cytosol-RE and plastids, respectively. MEP-derived isoprenoids include important compounds for chloroplast function and as such, knock-out mutant plants affected in different steps of this pathway display important alterations in plastid structure. These alterations often lead to albino phenotypes and lethality at seedling stage. MVA knock-out mutant plants show, on the contrary, lethal phenotypes already exhibited at the gametophyte or embryo developmental stage. However, the recent characterization of conditional knock-down mutant plants of farnesyl diphosphate synthase (FPS), a central enzyme in cytosolic and mitochondrial isoprenoid biosynthesis, revealed an unexpected role of this pathway in chloroplast development and plastidial isoprenoid metabolism in post-embryonic stages. Upon FPS silencing, chloroplast structure is severely altered, together with a strong reduction in the levels of MEP pathway-derived major end products. This phenotype is associated to misregulation of genes involved in stress responses predominantly belonging to JA and Fe homeostasis pathways. Transcriptomic experiments and analysis of recent literature indicate that sterols are the cause of the observed alterations through an as yet undiscovered mechanism.


Subject(s)
Phytosterols/metabolism , Plastids/metabolism , Arabidopsis/metabolism , Chloroplasts/metabolism , Hemiterpenes/metabolism , Mevalonic Acid/metabolism , Organophosphorus Compounds/metabolism , Plastids/physiology
13.
Prog Lipid Res ; 67: 27-37, 2017 07.
Article in English | MEDLINE | ID: mdl-28666916

ABSTRACT

In plants, sterols are found in free form (free sterols, FSs) and conjugated as steryl esters (SEs), steryl glycosides (SGs) and acyl steryl glycosides (ASGs). Conjugated sterols are ubiquitously found in plants but their relative contents highly differ among species and their profile may change in response to developmental and environmental cues. SEs play a central role in membrane sterol homeostasis and also represent a storage pool of sterols in particular plant tissues. SGs and ASGs are main components of the plant plasma membrane (PM) that specifically accumulate in lipid rafts, PM microdomains known to mediate many relevant cellular processes. There are increasing evidences supporting the involvement of conjugated sterols in plant stress responses. In spite of this, very little is known about their metabolism. At present, only a limited number of genes encoding enzymes participating in conjugated sterol metabolism have been cloned and characterized in plants. The aim of this review is to update the current knowledge about the tissue and cellular distribution of conjugated sterols in plants and the enzymes involved in their biosynthesis. We also discuss novel aspects on the role of conjugated sterols in plant development and stress responses recently unveiled using forward- and reverse-genetic approaches.


Subject(s)
Phytosterols/metabolism , Plants/metabolism , Glycosylation , Hydrolysis , Phytosterols/chemistry , Stress, Physiological
14.
Front Plant Sci ; 8: 984, 2017.
Article in English | MEDLINE | ID: mdl-28649260

ABSTRACT

Sterol glycosyltransferases (SGTs) catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom) SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and ß-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic acid and methyl jasmonate. Stress-induced SlSGT2 expression largely parallels that of SlSGT4. On the contrary, SlSGT1 and SlSGT3 expression remains almost unaltered under the tested stress conditions. Overall, this study contributes to broaden the current knowledge on plant SGTs and provides support to the view that tomato SGTs play overlapping but not completely redundant biological functions involved in mediating developmental and stress responses.

15.
Nat Commun ; 7: 12942, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703160

ABSTRACT

Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.


Subject(s)
Abietanes/biosynthesis , Rosmarinus/metabolism , Salvia/metabolism , Abietanes/metabolism , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Escherichia coli/metabolism , Genetic Vectors , Humans , Magnetic Resonance Spectroscopy , Mutagenesis , Mutagenesis, Site-Directed , Mutation , Oxidants/chemistry , Oxygen , Phylogeny , Saccharomyces cerevisiae/metabolism , Spectrometry, Mass, Electrospray Ionization
16.
Plant Physiol ; 172(1): 93-117, 2016 09.
Article in English | MEDLINE | ID: mdl-27382138

ABSTRACT

Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development.


Subject(s)
Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Cyclopentanes/metabolism , Geranyltranstransferase/metabolism , Iron/metabolism , Oxylipins/metabolism , Sterols/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/ultrastructure , Blotting, Western , Chloroplasts/genetics , Cyclopentanes/pharmacology , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Gene Silencing , Geranyltranstransferase/genetics , Microscopy, Confocal , Microscopy, Electron, Transmission , Mutation , Oxylipins/pharmacology , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction
17.
Adv Exp Med Biol ; 896: 263-85, 2016.
Article in English | MEDLINE | ID: mdl-27165331

ABSTRACT

The first transgenes were introduced in a plant genome more than 30 years ago. Since then, the capabilities of the plant scientific community to engineer the genome of plants have progressed at an unparalleled speed. Plant genetic engineering has become a central technology that has dramatically incremented our basic knowledge of plant biology and has enabled the translation of this knowledge into a number of increasingly complex and sophisticated biotechnological applications, which in most cases rely on the simultaneous co-expression of multiple recombinant proteins from different origins. To meet the new challenges of modern plant biotechnology, the plant scientific community has developed a vast arsenal of innovative molecular tools and genome engineering strategies. In this chapter we review a variety of tools, technologies, and strategies developed to transfer and simultaneously co-express multiple transgenes and proteins in a plant host. Their potential advantages, disadvantages, and future prospects are also discussed.


Subject(s)
Plant Proteins/biosynthesis , Plants, Genetically Modified/metabolism , Protein Engineering/methods , Recombinant Proteins/biosynthesis , Animals , Gene Expression Regulation, Plant , Gene Transfer Techniques , Genetic Vectors , Humans , Multiprotein Complexes , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Protein Multimerization , Protein Structure, Quaternary , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship , Transcription, Genetic
18.
Onco Targets Ther ; 8: 1567-74, 2015.
Article in English | MEDLINE | ID: mdl-26170691

ABSTRACT

The CD19 marker is expressed on the surface of normal and malignant immature or mature B-cells. On the other hand, immunotherapy involving T-cells is a promising modality of treatment for many neoplastic diseases including leukemias and lymphomas. The CD19/CD3-bispecific T-cell-engaging (BiTE(®)) monoclonal antibody blinatumomab can transiently engage cytotoxic T-cells to CD19+ target B-cells inducing serial perforin-mediated lysis. In the first clinical trial, blinatumomab showed efficacy in non-Hodgkin's lymphomas, but the most important trials have been conducted in relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL) and in ALL with minimal residual disease. Encouraging reports on the activity of blinatumomab in R/R Philadelphia chromosome-negative B-cell precursor ALL led to its approval by the US Food and Drug Administration on December 3, 2014 after an accelerated review process. This review focuses on the profile of blinatumomab and its activity in R/R ALL.

19.
PLoS One ; 10(5): e0124106, 2015.
Article in English | MEDLINE | ID: mdl-26020634

ABSTRACT

Carnosic acid (CA) is a phenolic diterpene with anti-tumour, anti-diabetic, antibacterial and neuroprotective properties that is produced by a number of species from several genera of the Lamiaceae family, including Salvia fruticosa (Cretan sage) and Rosmarinus officinalis (Rosemary). To elucidate CA biosynthesis, glandular trichome transcriptome data of S. fruticosa were mined for terpene synthase genes. Two putative diterpene synthase genes, namely SfCPS and SfKSL, showing similarities to copalyl diphosphate synthase and kaurene synthase-like genes, respectively, were isolated and functionally characterized. Recombinant expression in Escherichia coli followed by in vitro enzyme activity assays confirmed that SfCPS is a copalyl diphosphate synthase. Coupling of SfCPS with SfKSL, both in vitro and in yeast, resulted in the synthesis miltiradiene, as confirmed by 1D and 2D NMR analyses (1H, 13C, DEPT, COSY H-H, HMQC and HMBC). Coupled transient in vivo assays of SfCPS and SfKSL in Nicotiana benthamiana further confirmed production of miltiradiene in planta. To elucidate the subsequent biosynthetic step, RNA-Seq data of S. fruticosa and R. officinalis were searched for cytochrome P450 (CYP) encoding genes potentially involved in the synthesis of the first phenolic compound in the CA pathway, ferruginol. Three candidate genes were selected, SfFS, RoFS1 and RoFS2. Using yeast and N. benthamiana expression systems, all three where confirmed to be coding for ferruginol synthases, thus revealing the enzymatic activities responsible for the first three steps leading to CA in two Lamiaceae genera.


Subject(s)
Abietanes/biosynthesis , Plant Proteins/genetics , Rosmarinus/enzymology , Salvia/enzymology , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Cloning, Molecular , Gene Expression Profiling , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/metabolism , Rosmarinus/genetics , Salvia/genetics , Sequence Analysis, RNA
20.
Mol Plant ; 8(7): 1090-102, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25707755

ABSTRACT

The existence of multigenic families in the mevalonate pathway suggests divergent functional roles for pathway components involved in the biosynthesis of plant sterols. Squalene epoxidases (SQEs) are key components of this pathway, and Squalene Epoxidase 1 (SQE1) has been identified as a fundamental enzyme in this biosynthetic step. In the present work, we extended the characterization of the remaining SQE family members, phylogenetically resolving between true SQEs and a subfamily of SQE-like proteins that is exclusive to Brassicaceae. Functional characterization of true SQE family members, Squalene Epoxidase 2 (SQE2) and Squalene Epoxidase 3 (SQE3), indicates that SQE3, but not SQE2, contributes to the bulk SQE activity in Arabidopsis, with sqe3-1 mutants accumulating squalene and displaying sensitivity to terbinafine. We genetically demonstrated that SQE3 seems to play a particularly significant role in embryo development. Also, SQE1 and SQE3 both localize in the endoplasmic reticulum, and SQE3 can functionally complement SQE1. Thus, SQE1 and SQE3 seem to be two functionally unequal redundant genes in the promotion of plant SQE activity in Arabidopsis.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/growth & development , Seeds/enzymology , Seeds/growth & development , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Plant , Genetic Complementation Test , Mutation , Phylogeny , Protein Transport , Seeds/cytology , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...