Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 127: 64-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22925737

ABSTRACT

Hydrotreatment catalytic operations are commonly performed industrially by layered molybdenum sulfide promoted by cobalt or nickel in order to remove heteroelements (S, N, O) from fossil fuels and biofuels. Indeed, these heteroelements are responsible of the emission of pollutants when these fuels are used in vehicles. In this respect, previous studies made by our research group have shown that the active phase under steady state conditions is partially carbided while strong bending effects of MoS2 slabs were also observed. However, up to now, the morphology of the resulting Co/MoSxCy carbided catalyst has not been fully characterized. In the present study, for the first time, a chemical reaction between the carbon content of a TEM Cu/C grid and a freshly sulfide Co/MoS2 catalyst was in situ observed at 300 °C and 450 °C by HRTEM experimental techniques at ~10 nm of resolution. Results indicate that bending of MoS2 layers occurred due to carbon addition on MoS2 edge sites, as observed in stabilized catalysts after HDS reaction. Using a silicon grid, only cracks of MoS2 slabs were observed without bending effect confirming the role of structural-carbon in this change of morphology.

2.
ACS Nano ; 6(7): 6378-85, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22702240

ABSTRACT

Atomically smooth hexagonal boron nitride (h-BN) layers have very useful properties and thus potential applications for protective coatings, deep ultraviolet (DUV) emitters, and as a dielectric for nanoelectronics devices. In this paper, we report on the growth of h-BN by a low-pressure chemical vapor deposition (LPCVD) process using diborane and ammonia as the gas precursors. The use of LPCVD allows synthesis of h-BN with a controlled number of layers defined by the growth conditions, temperature, time, and gas partial pressure. Furthermore, few-layer h-BN was also grown by a sequential growth method, and insights into the growth mechanism are described, thus forming the basis of future growth of h-BN by atomic layer epitaxy.

3.
ACS Nano ; 5(9): 7198-204, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21800895

ABSTRACT

We demonstrate the synthesis of large-area graphene on Co, a complementary metal-oxide-semiconductor (CMOS)-compatible metal, using acetylene (C(2)H(2)) as a precursor in a chemical vapor deposition (CVD)-based method. Cobalt films were deposited on SiO(2)/Si, and the influence of Co film thickness on monolayer graphene growth was studied, based on the solubility of C in Co. The surface area coverage of monolayer graphene was observed to increase with decreasing Co film thickness. A thorough Raman spectroscopic analysis reveals that graphene films, grown on an optimized Co film thickness, are principally composed of monolayer graphene. Transport properties of monolayer graphene films were investigated by fabrication of back-gated graphene field-effect transistors (GFETs), which exhibited high hole and electron mobility of ∼1600 cm(2)/V s and ∼1000 cm(2)/V s, respectively, and a low trap density of ∼1.2 × 10(11) cm(-2).

4.
J Nanosci Nanotechnol ; 11(5): 3965-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21780393

ABSTRACT

The grafting of polybutylene oxide onto purified and functionalized carbon nanofibers is reported. Grafting was possible after the insertion of 2-(formyloxy)ethyl 2-bromo-2-methylpropanoate onto the carbon nanofibers. The polymerization of tetrahydrofuran was mediated by copper(I) bromide and 1,1,4,7-pentamethyl diethylenetriamine. The polymer-grafted carbon nanofibers were characterized by Raman spectrsocopy, Transmission Electron Microscopy, and Thermogravimetric Analysis. TEM images of CNF-COOH (A), CNF-PBO (B), completely open tip of CNF-COOH, and coated tip of CNF-PBO (D) are shown in the left panel. The right panel depicts the distribution of bromine (blue), and carbon (red) atoms inside and in the vicinity of CNF-Br (as obtained by Electron Energy Loss Spectroscopy). The bottom shows the actual doped CNF. Preliminary data showed that these modified fibers have potential applications as smart (electrorheological) fluids.

5.
Metallomics ; 2(3): 204-10, 2010 Mar.
Article in English | MEDLINE | ID: mdl-21069158

ABSTRACT

Silver nanocrystals (Ag NCs) hold promising antibiotic and antiviral properties in biological systems. The biodistribution of silver nanostructures injected into animals in vivo is currently unknown, remaining as a fundamental issue for potential therapeutic applications. Here, we injected Ag NCs capped with bovine serum albumin (BSA) in live rats to elucidate their fate in several organs including liver, heart and brain. Very significant accumulations of nanoparticles were confirmed by inductively coupled plasma mass spectroscopy (ICPMS) and transmission electron microscopy (TEM) techniques on the liver and heart. In contrast, the brain tissue did not reveal evidence of particles content. Our results suggest that Ag+ permeated across the blood-brain barrier (BBB), and followed swift clearance from the organ.


Subject(s)
Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Serum Albumin, Bovine/pharmacokinetics , Silver/pharmacokinetics , Animals , Brain/metabolism , Cattle , Female , Histocytochemistry , Liver/metabolism , Mass Spectrometry , Metal Nanoparticles/administration & dosage , Microscopy, Confocal , Microscopy, Electron, Transmission , Myocardium/metabolism , Nanocomposites/administration & dosage , Rats , Rats, Wistar , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Silver/chemistry , Tissue Distribution
6.
J Pharm Sci ; 99(7): 3150-65, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20187139

ABSTRACT

The challenges in forming stable drug suspensions in hydrofluoroalkane (HFA) propellants have limited drug dosages and efficiency of drug delivery with pressurized metered dose inhalers (pMDI). Herein, stable suspensions of weakly flocculated particles, in the shape of thin plates or needles, of a poorly water-soluble drug, itraconazole (Itz), are efficiently delivered by pMDI at high doses, up to 2.4 mg/actuation. These anisotropic particles pack inefficiently and form low-density flocs that stack upon each other to prevent settling. In contrast, spherical particles formed dense aggregates that settled within minutes. Upon actuation of the pMDI, atomized propellant droplets shear apart and thus template the highly friable flocs. Evaporation of the HFA compacts the flocs to yield porous particles with optimal aerodynamic properties. High fine particle fractions (49-64%) were achieved with the stable suspensions for drug loadings up to 50 mg/mL. Furthermore, the micron-sized particles, ideal for pulmonary delivery, are composed of nanoparticles that dissociate and facilitate rapid dissolution of poorly water-soluble drugs. Pulmonary delivery of stable suspensions of templated, open flocs is broadly applicable to a range of anisotropic particle morphologies for poorly water-soluble drugs and proteins for efficient delivery of high doses, up to several milligrams, using minimal amounts of excipients.


Subject(s)
Antifungal Agents/administration & dosage , Hydrocarbons, Fluorinated/chemistry , Itraconazole/administration & dosage , Metered Dose Inhalers , Administration, Inhalation , Aerosols/chemistry , Particle Size
7.
Nanoscale Res Lett ; 4(8): 896-902, 2009 May 15.
Article in English | MEDLINE | ID: mdl-20596397

ABSTRACT

Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...