Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e32573, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961942

ABSTRACT

In this study, a novel 3,3'-bipyrazolo [3,4-b]pyridine-type structure was synthesized from 5-acetylamino-3-methyl-1-phenylpyrazole using the Vilsmeier-Haack reaction as a key step. The spectroscopic properties and structural elucidation of the compound were determined with the use of FT-IR, HRMS, 1H NMR, and 13C NMR. Likewise, the theoretical analysis of the IR and NMR spectra allowed peaks to be assigned and a solid correlation was demonstrated between the experimental and theoretical results. Finally, ab initio calculations based on the density functional theory method at the B3LYP/6-311G (d,p) level of theory were used to determine the conformational energy barrier, facilitating the identification of the most probable conformers of the synthesized compound. Overall, our findings contribute to the understanding of bipyrazolo [3,4-b]pyridine derivatives.

2.
Nat Chem Biol ; 19(11): 1331-1341, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37365405

ABSTRACT

Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.


Subject(s)
Arabidopsis Proteins , Brassinosteroids , Plasmodesmata/metabolism , Plant Growth Regulators , Plants/metabolism , Hormones , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism
3.
RSC Adv ; 13(8): 5197-5207, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36777942

ABSTRACT

A single crystal of a piperonal chalcone derivative was obtained, fully characterized, and crystallized by a slow evaporation technique. The synthesized compound was characterized by UV-Visible, FT-IR, HRMS, 1H NMR, and 13C NMR spectroscopic studies and X-ray crystallography, revealing that the crystal belongs to a triclinic crystal system with a P1̄ space group, Z = 2. In the present work, we focus on molecular modeling studies such as Hirshfeld surface analysis, energy framework calculations, frontier molecular orbital analysis, natural bond orbital analysis, and NLO properties of a π-conjugate system combining the chalcone and the pyrazole[3,4-b]pyridine scaffolds to describe the in-depth structural analysis thereof. Good agreement was found between the calculated results and experimental data. In addition, Hirshfeld surface analysis of the crystal structure showed that the intermolecular stabilization in the crystal packing comes mainly from H⋯H bond interactions. The chalcone crystal exhibits significant NLO properties suggesting that it could be considered a potential candidate for application in nonlinear optical devices.

4.
Int J Mol Sci ; 22(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062717

ABSTRACT

Brassinosteroids are polyhydroxysteroids that are involved in different plants' biological functions, such as growth, development and resistance to biotic and external stresses. Because of its low abundance in plants, much effort has been dedicated to the synthesis and characterization of brassinosteroids analogs. Herein, we report the synthesis of brassinosteroid 24-nor-5ß-cholane type analogs with 23-benzoate function and 22,23-benzoate groups. The synthesis was accomplished with high reaction yields in a four-step synthesis route and using hyodeoxycholic acid as starting material. All synthesized analogs were tested using the rice lamina inclination test to assess their growth-promoting activity and compare it with those obtained for brassinolide, which was used as a positive control. The results indicate that the diasteroisomeric mixture of monobenzoylated derivatives exhibit the highest activity at the lowest tested concentrations (1 × 10-8 and 1 × 10-7 M), being even more active than brassinolide. Therefore, a simple synthetic procedure with high reaction yields that use a very accessible starting material provides brassinosteroid synthetic analogs with promising effects on plant growth. This exploratory study suggests that brassinosteroid analogs with similar chemical structures could be a good alternative to natural brassinosteroids.


Subject(s)
Benzoates/chemical synthesis , Brassinosteroids/chemical synthesis , Cholanes/chemical synthesis , Plant Development , Arabidopsis/growth & development , Benzoates/chemistry , Brassinosteroids/chemistry , Cholanes/chemistry , Deoxycholic Acid/chemical synthesis , Deoxycholic Acid/chemistry , Molecular Structure , Oryza/chemistry , Plant Growth Regulators , Steroids, Heterocyclic/chemistry
5.
Molecules ; 26(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671806

ABSTRACT

The metabolism of brassinosteroid leads to structural modifications in the ring skeleton or the side alkyl chain. The esterification and glycosylation at C-3 are the most common metabolic pathways, and it has been suggested that conjugate brassinosteroids are less active or inactive. In this way, plants regulate the content of active brassinosteroids. In this work, the synthesis of brassinosteroid 24-norcholane type analogs conjugated at C-3 with benzoate groups, carrying electron donor and electron attractant substituents on the aromatic ring, is described. Additionally, their growth-promoting activities were evaluated using the Rice Lamina Inclination Test (RLIT) and compared with that exhibited by brassinolide (used as positive control) and non-conjugated analogs. The results indicate that at the lowest tested concentrations (10-8-10-7 M), all analogs conjugated at C-3 exhibit similar or higher activities than brassinolide, and the diasteroisomers with S configuration at C-22 are the more active ones. Increasing concentration (10-6 M) reduces the biological activities of analogs as compared to brassinolide.


Subject(s)
Benzoates/chemistry , Brassinosteroids/chemical synthesis , Oryza/drug effects , Plant Growth Regulators/chemical synthesis , Benzoates/pharmacology , Brassinosteroids/chemistry , Brassinosteroids/pharmacology , Dose-Response Relationship, Drug , Molecular Conformation , Oryza/metabolism , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Stereoisomerism
6.
Int J Mol Sci ; 22(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375728

ABSTRACT

Brassinosteroids are a class of plant hormones that regulate a broad range of physiological processes such as plant growth, development and immunity, including the suppression of biotic and abiotic stresses. In this paper, we report the synthesis of new brassinosteroid analogues with a nitrogen-containing side chain and their biological activity on Arabidopis thaliana. Based on molecular docking experiments, two groups of brassinosteroid analogues were prepared with short and long side chains in order to study the impact of side chain length on plants. The derivatives with a short side chain were prepared with amide, amine and ammonium functional groups. The derivatives with a long side chain were synthesized using amide and ammonium functional groups. A total of 25 new brassinosteroid analogues were prepared. All 25 compounds were tested in an Arabidopsis root sensitivity bioassay and cytotoxicity screening. The synthesized substances showed no significant inhibitory activity compared to natural 24-epibrassinolide. In contrast, in low concentration, several compounds (8a, 8b, 8e, 16e, 22a and 22e) showed interesting growth-promoting activity. The cytotoxicity assay showed no toxicity of the prepared compounds on cancer and normal cell lines.


Subject(s)
Brassinosteroids/chemical synthesis , Brassinosteroids/pharmacology , Chemistry Techniques, Synthetic , Nitrogen/chemistry , Arabidopsis/drug effects , Arabidopsis/growth & development , Brassinosteroids/chemistry , Molecular Structure , Plant Development/drug effects
7.
Molecules ; 24(24)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861056

ABSTRACT

Natural brassinosteroids possess a 22R, 23R configuration that appears essential for biological activity. It is, therefore, interesting to elucidate if the activity of brassinosteroids with a short side chain depends on the C22 configuration. Herein, we describe the synthesis of new brassinosteroids analogs with 24-norcholane type of side chain and R configuration at C22. The initial reaction is the dihydroxylation of a terminal olefin that leads to S/R epimers. Three different methods were tested in order to evaluate the obtained S/R ratio and the reaction yields. The results indicate that Upjohn dihydroxylation is the most selective reaction giving a 1.0:0.24 S/R ratio, whereas a Sharpless reaction leads to a mixture of 1.0:0.90 S/R with 95% yield. Using the latter mixture and following a previous reported method, benzoylated derivatives and both S and R brassinosteroids analogs were synthesized. All synthesized compounds were completely characterized by NMR spectroscopy, and HRMS of new compounds are also given. In conclusion, a synthetic route for preparation of new analogs of brassinosteroids of 24-norcholane type and R configuration at C22 were described. It is expected that this will help to elucidate if a configuration at C22 is a structural requirement for hormonal growth activity in plants.


Subject(s)
Brassinosteroids/chemistry , Chemistry Techniques, Synthetic , Cholanes/chemistry , Molecular Structure , Brassinosteroids/chemical synthesis , Cholanes/chemical synthesis , Hydroxylation , Magnetic Resonance Spectroscopy , Plant Growth Regulators
SELECTION OF CITATIONS
SEARCH DETAIL
...