Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Foods ; 9(1)2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31940769

ABSTRACT

Micro matrix solid phase dispersion (micro-MSPD) was optimized by response surface methodology for the extraction of polyphenols from the peel of twelve traditional and eight commercial apple varieties grown in Croatia. The optimized micro-MSPD procedure includes the use of 0.2 g of sample, 0.8 g of dispersant, a 57% solution of methanol in water as the solvent and 5 mL of extract volume. The total polyphenolic index (TPI) and antioxidant activity (AA) were measured by spectrophotometric assays. Eighteen polyphenolic compounds were identified in all investigated apples by HPLC-DAD and LC-(ESI)-MS. The peel of traditional apple varieties had higher contents of all investigated polyphenols. Calculated relative contribution of polyphenol groups indicated non-flavonoids (28.6%) and flavanols (46.2%) as the major contributors to the total polyphenolic content in traditional and commercial apple varieties, respectively. The most abundant polyphenol in traditional apple peel was chlorogenic acid, procyanidin B2 and epicatechin (1143 ± 755 µg/g dw, 954 ± 343 µg/g dw and 560 ± 362 µg/g dw, respectively). The peel of varieties 'Apistar', 'Bobovac' and 'Bozicnica' could be highlighted as an important source of polyphenols.

2.
Electron. j. biotechnol ; 36: 15-23, nov. 2018. tab, ilus, graf
Article in English | LILACS | ID: biblio-1047981

ABSTRACT

Background: Taraxacum officinale G.H. Weber ex Wiggers is a wild plant used in folk medicine to treat several diseases owing to bioactive secondary metabolites present in its tissue. The accumulation of such molecules in plant cells can occur as a response against abiotic stress, but these metabolites are often deposited in low concentrations. For this reason, the use of a biotechnological approach to improve the yields of technologically interesting bioactive compounds such as anthocyanins is a compelling option. This work focuses on investigating the potential of in vitro T. officinale cultures as an anthocyanin source. Results: To demonstrate the suitability of anthocyanin induction and accumulation in calluses under specific conditions, anthocyanin was induced in the T. officinale callus. A specific medium of 5.5% sucrose supplemented with 6-benzylaminopurine /1-naphthaleneacetic acid in a 10:1 ratio was used to produce an anthocyanin yield of 1.23 mg g-1 fw. An in vitro dandelion callus line was established from this experiment. Five mathematical models were then used to objectively and predictably explain the growth of anthocyanin-induced calluses from T. officinale. Of these models, the Richards model offered the most suitable representation of anthocyanin callus growth in a solid medium and permitted the calculation of the corresponding kinetic parameters. Conclusions: The findings demonstrate the potential of an in vitro anthocyanin-induced callus line from T. officinale as an industrial anthocyanin source.


Subject(s)
Taraxacum/growth & development , Plant Development , Anthocyanins/metabolism , In Vitro Techniques , Kinetics , Plant Cells , Phytochemicals
SELECTION OF CITATIONS
SEARCH DETAIL
...