Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 47(9): 2298-2301, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35486785

ABSTRACT

Focimeters, especially manual versions, are the most used ophthalmic devices for dioptric power measurement in optometric clinical care. In the particular case of progressive addition lenses (PALs), they are used to determine far/near vision correction powers, but the user/clinician needs to know at which part of the PAL the measurement must be taken. For this reason, PALs have permanent engravings acting as reference marks to define the far/near vision areas for every PAL design. However, for several reasons these engravings are often difficult to localize and identify, making an accurate dioptric power determination difficult. In this Letter, we present an adaptation of the Gabor holographic principle to a manual focimeter and describe the methodology for the correct localization, visualization, and marking process of the reference engravings in PALs. Experimental results considering different types of PALs are included and the main limitations of the technique are also discussed.


Subject(s)
Engraving and Engravings , Holography , Equipment Design , Eyeglasses , Vision, Ocular
2.
Opt Express ; 30(6): 8974-8990, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299337

ABSTRACT

Stokes lenses are variable power astigmatic lenses comprising of, in its standard version, two pure cylindrical lenses of equal but contrary power that rotate in opposite directions. Here, we present an optical device with variable and continuous astigmatic power which is based on a modified Stokes lens where two sphero-cylindrical lenses (in the form of pure astigmatic lenses) are combined in the classical way but merged with another fixed pure astigmatic lens for improving the capabilities of the resulting optical device concerning the expansion of the astigmatic range without worsening the dioptric power step resolution. The performance of this device is theoretically analyzed in virtue of the power vectors formalism including a three-dimensional (3-D) representation of the generated dioptric power as a function of both the meridian and the rotation angle between the cylinder's axes. In addition, we have assembled a lab-made prototype of the proposed modified Stokes lens and validated its theoretical behavior by dioptric power measurements with an automatic focimeter. As conventional Stokes lenses, the applications of this new optical device range from astigmatism compensation in optical instruments to measurement of refractive error in subjective routines with the previously commented improved capabilities.

3.
Appl Opt ; 59(11): 3347-3352, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32400444

ABSTRACT

Variable power cross-cylinder lenses (or Stokes lenses) have been widely known in the literature for decades. In this paper, we describe how to build a low-cost Stokes lens and discuss its calibration and its application to two significant cases. The construction is in virtue of a phoropter's Risley prism mount for assembling a couple of equal but opposite sign cylindrical lenses (we have selected $\,\pm 1.50$±1.50 D). Thus, variable astigmatic power is achieved by relative rotation of the lenses in opposite directions, and the resulting astigmatic axis is defined by the global rotation of the device. Calibration measurements are performed using an automatic lensmeter (Topcon CL-300) and an aberrometer (Zeiss iProfiler plus) for low and high order, respectively, aberration characterization. The proposed device has been adapted to a manual Topcon LM-8 lensmeter and to a regular Olympus BX-60 upright microscope for experimental validation concerning astigmatism compensation in a digital microscope and astigmatism cancellation in ophthalmic lenses, respectively. The device can be easily adapted to any ophthalmic/optic instrument for the compensation and/or measurement of astigmatism up to a maximum range of $|3|$|3| D of astigmatism.

SELECTION OF CITATIONS
SEARCH DETAIL
...