Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Res ; 41(4): 432-43, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17454125

ABSTRACT

Metal-catalysed radical oxidation of diacyl-glycerophosphatidylcholines (GPC) with omega-6 acyl polyunsaturated fatty acids (PAPC, palmitoyl-arachidonoyl-glycerophosphatidylcholine and PLPC, palmitoyl-lineloyl-glycerophosphatidylcholine) was studied. Free radical oxidation products were trapped by spin trapping with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and identified by electrospray mass spectrometry (ES-MS). The spin adducts of oxidised GPC containing one and two oxygen atoms and one and two DMPO molecules were observed as doubly charged ions. Structural characterisation by tandem mass spectrometry (MS/MS) of these ions revealed product ions corresponding to loss of the acyl chains (sn-1-palmitoyl and sn-2-oxidised spin adduct of lineloyl or arachidonoyl), loss of the spin trap (DMPO) and product ions attributed to oxidised sn-2 fatty acid spin adduct (lineloyl and arachidonoyl). Product ions formed by homolytic cleavages near the spin trap and also from 1,4 hydrogen elimination cleavages involving the hydroxy group in the sn-2 fatty acid spin adduct allowed to infer the nature of the radical. Altogether, the presence of GPC hydroxy-alkyl/DMPO and hydroxy-alkoxyl/DMPO spin adducts was proposed.


Subject(s)
Fatty Acids, Omega-6/metabolism , Free Radicals , Glycerol/chemistry , Phosphatidylcholines/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Hydrogen Peroxide/pharmacology , Ions , Iron/pharmacology , Models, Chemical , Oxygen/chemistry , Phospholipids/chemistry , Spectrometry, Mass, Electrospray Ionization , Spin Labels , Spin Trapping
2.
Biomed Chromatogr ; 20(1): 109-18, 2006 Jan.
Article in English | MEDLINE | ID: mdl-15981198

ABSTRACT

Linoleic acid radical products formed by radical reaction (Fenton conditions) were trapped using 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and analysed by reversed-phase liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The linoleic acid radical species detected as DMPO spin adducts comprised oxidized linoleic acid and short-chain radical species that resulted from the breakdown of carbon and oxygen centred radicals. Based on the m/z values, the short-chain products were identified as alkyl and carboxylic acid DMPO radical adducts that exhibited different elution times. The ions identified as DMPO radical adducts were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS spectra of linoleic acid DMPO radical adducts exhibited the fragment ion at m/z 114 and/or the loss of neutral molecule of 113 Da (DMPO) or 131 Da (DMPO + H2O), indicated to be DMPO adducts. The short-chain products identified allowed inference of the radical oxidation along the linoleic acid chain by abstraction of hydrogen atoms in carbon atoms ranging from C-8 to C-14. Other ions containing the fragment ion at m/z 114 in the LC-MS/MS spectra were attributed to DMPO adducts of unsaturated aldehydes, hydroxy-aldehydes and oxocarboxylic acids. The identification of aldehydic products formed by radical oxidation of linoleic acid peroxidation products, as short-chain product DMPO adducts, is a means of identifying lipid peroxidation products.


Subject(s)
Chromatography, Liquid/methods , Linoleic Acid/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Spin Trapping , Free Radicals
3.
Biomed Chromatogr ; 19(2): 129-37, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15558686

ABSTRACT

Lipid peroxidation process has attracted much attention due to the growing evidence of its involvement in the pathogenesis of age-related diseases. The monitoring of the lipid peroxidation products in phospholipids, formed under oxidative stress conditions, may provide new markers for oxidative stress signaling and for disease states, giving new insights in the pathogenesis process. Reversed-phase liquid chromatographic method coupled to mass spectrometry was developed for the separation of oxidized glycero-phosphatidylcholine (GPC) peroxidation products formed by the Fenton reaction that mimic in vivo oxidative stress conditions. The LC-MS conditions were applied for the separation of peroxidation products of oleoyl- (POPC), lineloyl- (PLPC) and arachidonoyl-palmitoyl phosphatidylcholine (PAPC). The peroxidation products separated included products resulting from the insertion of oxygen atoms in the sn-2 chain (long-chain), and products with the sn-2 chain shortened resulting from cleavage of oxygen-centered radicals (short-chain). Among long-chain products were the keto, hydroxy, hydroperoxide and poly-hydroxy derivatives, while short-chain products included dicarboxylic acids, aldehydes and hydroxy-aldehydes. Separation of long-chain products formed in each phosphatidylcholine was observed, and the reconstructed ion chromatogram of each ion showed an increase in the number of peaks with the increase in the number of oxygen atoms inserted into the phospholipid. Separation of short-chain products took place according to the functional group present at the sn-2 moiety that allowed the elution of dicarboxylic acids distinct from aldehydes. Separation between isomeric structures that were present in short- and long-chain products was also achieved.


Subject(s)
Chromatography, High Pressure Liquid/methods , Lipid Peroxidation , Phosphatidylcholines/isolation & purification , Phosphatidylcholines/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Oxidative Stress , Phosphatidylcholines/analysis
4.
J Mass Spectrom ; 39(12): 1513-22, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15578637

ABSTRACT

Three glycerophosphatidylcholine (GPC) phospholipids (oleoyl-, linoleoyl- and arachidonoylpalmitoylphosphatidylcholine) were oxidized under Fenton reaction conditions (H(2)O(2) and Fe(2+)), and the long-chain oxidation products were detected by electrospray mass spectrometry (ES-MS) and characterized by ES-MS/MS. The intact oxidation products resulted from the insertion of oxygen atoms into the phospholipid structure. The tandem mass spectra of the [MNa](+) molecular ion showed, apart from the characteristic fragments of GPC, fragment ions resulting from neutral losses from [MNa](+), and combined with loss of 59 and 183 Da from [MNa](+). These ions resulted from cleavage of the bond near the hydroxy group by a charge-remote fragmentation mechanism, allowing its location to be pinpointed. The fragments thus formed reflected the positions of the double bonds and of the derivatives along the unsaturated fatty acid chain, giving very useful information, as they allowed the presence of structural isomers and positional isomers to be established. The identification of the fragment ion at m/z 163, which is 16 Da higher than the five-membered cyclophosphane ion (m/z 147), in some tandem mass spectra, is consistent with the oxidation of the phosphocholine head. Some ions were found to occur with the same m/z value; in two of the phospholipids and based on the MS/MS data, structural and positional isomers were differentiated. Our findings indicate that MS/MS is a valuable tool for the identification of the wide complexity of structural features occurring in oxidized phosphatidylcholines during lipid peroxidation in cellular membranes.


Subject(s)
Phosphatidylcholines/chemistry , Isomerism , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization/methods , Structure-Activity Relationship
5.
Rapid Commun Mass Spectrom ; 18(23): 2849-58, 2004.
Article in English | MEDLINE | ID: mdl-15517554

ABSTRACT

Lineloyl-palmitoyl (PLPC) and arachidonoyl-palmitoyl (PAPC) phosphatidylcholine were oxidized under Fenton reaction conditions (H2O2 and Fe2+), and the short-chain products formed were identified by electrospray ionization mass spectrometry (ESI-MS). The short-chain products resulted from beta-cleavage of oxygen-centered radicals and comprised aldehydes, hydroxyaldehydes and dicarboxylic acids that yielded both [MH]+ and [MNa]+ ions. The fragmentation of the [MH]+ and [MNa]+ ions of the peroxidation products was studied by tandem mass spectrometry (MS/MS). The MS/MS spectra of both ions showed ions resulting from characteristic losses of glycerophosphatidylcholine. Other product ions, resulting from C-C cleavages occurring in the vicinity of the functional group, and fragmentations involving the hydroxy groups, were the most informative since they allowed us to obtain structural information relating to the sn-2 acyl residue. Both fragmentation pathways are due to charge-remote fragmentation occurring by a 1,4-hydrogen elimination mechanism and/or by homolytic cleavage. Furthermore, the fragmentation pathway of some ions observed in the ESI-MS spectrum was not consistent with the fragmentation behavior expected for some of the short-chain species identified in the literature and allowed the reassignment of the ions as different structures. Isobaric ions were observed in the ESI-MS spectra of both oxidized phospholipids, and were differentiated based on distinct fragmentation. The detailed knowledge of lipid peroxidation degradation products is of major importance and should be very valuable in providing new markers for oxidative stress signaling and for disease states monitoring.


Subject(s)
Aldehydes/chemistry , Dicarboxylic Acids/chemistry , Phosphatidylcholines/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Aldehydes/analysis , Dicarboxylic Acids/analysis , Hydrogen Peroxide/chemistry , Iron/chemistry , Lipid Peroxidation , Oxidation-Reduction
6.
Rapid Commun Mass Spectrom ; 18(10): 1047-58, 2004.
Article in English | MEDLINE | ID: mdl-15150827

ABSTRACT

GPC radical species formed during oxidation of a glycerophosphocholine (16:0/18:1) under the Fenton reaction conditions were detected using a spin trap, 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). The stable spin-trapped radical adducts were identified by mass spectrometry (MS) using electrospray (ES) as ionization method and characterized by tandem mass spectrometry (MS/MS). Radical adducts of oxidized free sn-2 fatty acid and of oxidized intact GPC, containing one, two and three additional oxygen atoms, were assigned. DMPO adducts of oxidized intact GPC were observed as singly and doubly charged ions in ES-MS, while adducts of oxidized free fatty acids were observed as singly charged ions. Oxidized free sn-2 fatty acids and intact GPC-DMPO adducts correspond to carbon- and oxygen-centered radicals that were identified by MS/MS as alkyl, hydroxy-alkyl, alkoxyl, hydroxy-alkoxyl, peroxyl and hydroperoxide-alkoxyl spin adducts. The DMPO molecule was attached predominantly at C(9) of the oleic chain. The fragmentation pathway of spin adducts with two DMPO molecules strongly suggests the presence of species that were simultaneously carbon- and oxygen-centered radicals. Several fragments identified are consistent with the presence of isomeric structures contributing to the same ions.

7.
J Am Soc Mass Spectrom ; 14(11): 1250-61, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14597115

ABSTRACT

The formation of linoleic acid radical species under the oxidative conditions of the Fenton reaction (using hydrogen peroxide and Fe (II)) was monitored by FAB-MS and ES-MS using the spin trap 5,5-dimethyl-1-pyrrolidine-N-oxide, DMPO. Both the FAB and ES mass spectra were very similar and showed the presence of ions corresponding to carbon- and oxygen centered spin adducts (DMPO/L*, DMPO/LO*, and DMPO/LOO*). Cyclic structures, formed between the DMPO oxygen and the neighboring carbon of the fatty acid, were also observed. Electrospray tandem mass spectrometry of these ions was performed to confirm the proposed structure of these adducts. All MS/MS spectra showed an ion at m/z 114, correspondent to the [DMPO + H]+, and a fragment ion due to loss of DMPO (loss of 113 Da), confirming that they are DMPO adducts. ES-MS/MS spectra of alkoxyl radical adducts (DMPO/LO*) showed an additional ion at m/z 130 [DMPO - O + H]+, while ES MS/MS of peroxyl radical adducts (DMPO/LOO*) showed a fragment ion at m/z 146 [DMPO - OO + H]+, confirming both structures. Other fragment ions were observed, such as alkyl acylium radical ions, formed by cleavage of the alkyl chain after loss of water and the DMPO molecule. The identification of fragment ions observed in the MS/MS spectra of the different DMPO adducts suggests the occurrence of structural isomers containing the DMPO moiety both at C9 and C13. The use of ES tandem mass spectrometry, associated with spin trapping experiments, has been shown to be a valuable tool for the structural characterization of carbon and oxygen-centered spin adducts of lipid radicals.


Subject(s)
Free Radicals/chemistry , Linoleic Acid/chemistry , Indicators and Reagents , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Fast Atom Bombardment
SELECTION OF CITATIONS
SEARCH DETAIL
...