Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1078998, 2023.
Article in English | MEDLINE | ID: mdl-36844089

ABSTRACT

After light, temperature is the most relevant environmental parameter in outdoors cultivation of microalgae. Suboptimal and supraoptimal temperatures negatively impact growth and photosynthetic performance with a subsequent effect on lipid accumulation. It is generally recognised that lower temperatures trigger an increase in fatty acid desaturation while higher temperatures trigger the opposite reaction. The effect of temperature on lipid classes has been less studied in microalgae and in certain cases, the effect of light cannot be completely excluded. In this research, the effect of temperature on growth, photosynthesis, and lipid class accumulation in Nannochloropsis oceanica was studied at a fixed light gradient with a constant incident light intensity (670 µmol m-2 s-1). A turbidostat approach was used to achieve temperature acclimated cultures of Nannochloropsis oceanica. Optimal growth was found at 25-29°C, while growth was completely arrested at temperatures higher than 31°C and lower than 9°C. Acclimation to low temperatures triggered a decrease in absorption cross section and photosynthesis rates with a tipping point at 17°C. Reduced light absorption was correlated with a decrease in content of the plastid lipids monogalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol. The increase of diacylglyceryltrimethylhomo-serine content at lower temperatures indicated a relevant role of this lipid class in temperature tolerance. Triacylglycerol content increased at 17°C and decreased at 9°C emphasising a metabolic switch in stress response. Total and polar eicosapentaenoic acid content remained constant at 3.5 and 2.4% w/w, despite the fluctuating lipid contents. Results show an extensive mobilisation of eicosapentaenoic acid between polar lipids classes at 9°C to ensure cell survival under critical conditions.

2.
Microb Biotechnol ; 15(6): 1824-1838, 2022 06.
Article in English | MEDLINE | ID: mdl-35175653

ABSTRACT

Microalgae industrial production is viewed as a solution for alternative production of nutraceuticals, cosmetics, biofertilizers, and biopolymers. Throughout the years, several technological advances have been implemented, increasing the competitiveness of microalgae industry. However, online monitoring and real-time process control of a microalgae production factory still require further development. In this mini-review, non-destructive tools for online monitoring of cellular agriculture applications are described. Still, the focus is on the use of fluorescence spectroscopy to monitor several parameters (cell concentration, pigments, and lipids) in the microalgae industry. The development presented makes it the most promising solution for monitoring up-and downstream processes, different biological parameters simultaneously, and different microalgae species. The improvements needed for industrial application of this technology are also discussed.


Subject(s)
Cosmetics , Microalgae , Agriculture , Biological Factors , Biomass , Microalgae/chemistry , Spectrometry, Fluorescence
3.
Bioresour Technol ; 318: 124104, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32942095

ABSTRACT

This work aimed to investigate the accumulation of fucoxanthin and lipids in Tisochrysis lutea during growth (N+) and nitrogen-starvation (N-) and to correlate these products with single-cell emissions using fluorescence-activated cell sorting (FACS). Fucoxanthin content decreased 52.94% from N+ to N- in batch cultivation; increased 40.53% as dilution rate changed from 0.16 to 0.55 d-1 in continuous cultivation. Total lipids (N-) were constant (~250 mg/g), but the abundance of neutral lipids increased from 4.87% to 40.63%. Nile red can stain both polar and neutral lipids. However, in vivo, this differentiation is limited due to an overlapping of signals between 600 and 660 nm, caused by neutral lipids concentrations above 3.48% (W/W). Chlorophyll autofluorescence (720 nm) was reported for the first time as a proxy for fucoxanthin (R2 = 0.90) and polar lipids (R2 = 0.98). FACS can be used in high throughput quantification of pigments and lipids and to select and sort cells with high-fucoxanthin/lipids.


Subject(s)
Haptophyta , Lipids , Chlorophyll , Xanthophylls
4.
Sci Rep ; 10(1): 7688, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376848

ABSTRACT

Online monitoring of algal biotechnological processes still requires development to support economic sustainability. In this work, fluorescence spectroscopy coupled with chemometric modelling is studied to monitor simultaneously several compounds of interest, such as chlorophyll and fatty acids, but also the biomass as a whole (cell concentration). Fluorescence excitation-emission matrices (EEM) were acquired in experiments where different environmental growing parameters were tested, namely light regime, temperature and nitrogen (replete or deplete medium). The prediction models developed have a high R2 for the validation data set for all five parameters monitored, specifically cell concentration (0.66), chlorophyll (0.78), and fatty acid as total (0.78), saturated (0.81) and unsaturated (0.74). Regression coefficient maps of the models show the importance of the pigment region for all outputs studied, and the protein-like fluorescence region for the cell concentration. These results demonstrate for the first time the potential of fluorescence spectroscopy for in vivo and real-time monitoring of these key performance parameters during Nannochloropsis oceanica cultivation.


Subject(s)
Biomass , Chlorophyll/metabolism , Fatty Acids/metabolism , Spectrometry, Fluorescence , Stramenopiles/metabolism , Industrial Microbiology , Microalgae/growth & development , Stramenopiles/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL