Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Meas ; 37(1): 128-44, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26657196

ABSTRACT

This work proposes a systematic procedure to report the differences between heart rate variability time series obtained from alternative measurements reporting the spread and mean of the differences as well as the agreement between measuring procedures and quantifying how stationary, random and normal the differences between alternative measurements are. A description of the complete automatic procedure to obtain a differences time series (DTS) from two alternative methods, a proposal of a battery of statistical tests, and a set of statistical indicators to better describe the differences in RR interval estimation are also provided. Results show that the spread and agreement depend on the choice of alternative measurements and that the DTS cannot be considered generally as a white or as a normally distributed process. Nevertheless, in controlled measurements the DTS can be considered as a stationary process.


Subject(s)
Heart Function Tests/methods , Heart Rate , Electrocardiography , Time Factors
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 5700-3, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737586

ABSTRACT

This work compares several fiducial points to detect the arrival of a new pulse in a photoplethysmographic signal using the built-in camera of smartphones or a photoplethysmograph. Also, an optimization process for the signal preprocessing stage has been done. Finally we characterize the error produced when we use the best cutoff frequencies and fiducial point for smartphones and photopletysmograph and compare if the error of smartphones can be reasonably be explained by variations in pulse transit time. The results have revealed that the peak of the first derivative and the minimum of the second derivative of the pulse wave have the lowest error. Moreover, for these points, high pass filtering the signal between 0.1 to 0.8 Hz and low pass around 2.7 Hz or 3.5 Hz are the best cutoff frequencies. Finally, the error in smartphones is slightly higher than in a photoplethysmograph.


Subject(s)
Heart Rate , Humans , Photoplethysmography , Pulse Wave Analysis , Smartphone
3.
Article in English | MEDLINE | ID: mdl-26737985

ABSTRACT

The aim of this paper is to present a smartphone based system for real-time pulse-to-pulse (PP) interval time series acquisition by frame-to-frame camera image processing. The developed smartphone application acquires image frames from built-in rear-camera at the maximum available rate (30 Hz) and the smartphone GPU has been used by Renderscript API for high performance frame-by-frame image acquisition and computing in order to obtain PPG signal and PP interval time series. The relative error of mean heart rate is negligible. In addition, measurement posture and the employed smartphone model influences on the beat-to-beat error measurement of heart rate and HRV indices have been analyzed. Then, the standard deviation of the beat-to-beat error (SDE) was 7.81 ± 3.81 ms in the worst case. Furthermore, in supine measurement posture, significant device influence on the SDE has been found and the SDE is lower with Samsung S5 than Motorola X. This study can be applied to analyze the reliability of different smartphone models for HRV assessment from real-time Android camera frames processing.


Subject(s)
Heart Rate/physiology , Photoplethysmography/instrumentation , Photoplethysmography/methods , Smartphone , Adult , Humans , Image Processing, Computer-Assisted/methods , Middle Aged , Mobile Applications , Posture , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...