Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathol Appl Neurobiol ; 49(1): e12879, 2023 02.
Article in English | MEDLINE | ID: mdl-36702749

ABSTRACT

AIMS: Amyloid precursor protein (APP) 𝛽-C-terminal fragment (𝛽CTF) may have a neurotoxic role in Alzheimer's disease (AD). 𝛽CTF accumulates in the brains of patients with sporadic (SAD) and genetic forms of AD. Synapses degenerate early during the pathogenesis of AD. We studied whether the 𝛽CTF accumulates in synapses in SAD, autosomal dominant AD (ADAD) and Down syndrome (DS). METHODS: We used array tomography to determine APP at synapses in human AD tissue. We measured 𝛽CTF, A𝛽40, A𝛽42 and phosphorylated tau181 (p-tau181) concentrations in brain homogenates and synaptosomes of frontal and temporal cortex of SAD, ADAD, DS and controls. RESULTS: APP colocalised with pre- and post-synaptic markers in human AD brains. APP 𝛽CTF was enriched in AD synaptosomes. CONCLUSIONS: We demonstrate that 𝛽CTF accumulates in synapses in SAD, ADAD and DS. This finding might suggest a role for 𝛽CTF in synapse degeneration. Therapies aimed at mitigating 𝛽CTF accumulation could be potentially beneficial in AD.


Subject(s)
Alzheimer Disease , Down Syndrome , Humans , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Down Syndrome/metabolism , Brain/pathology , Synapses/pathology , Amyloid beta-Peptides/metabolism
2.
J Neurosci Res ; 100(10): 1862-1875, 2022 10.
Article in English | MEDLINE | ID: mdl-35766328

ABSTRACT

The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the hexanucleotide repeat expansion in C9orf72. An important neuropathological hallmark associated with this mutation is the accumulation of the phosphorylated form of TAR (trans-activation response element) DNA-binding protein 43 (pTDP-43). Glia plays a crucial role in the neurodegeneration observed in C9orf72-associated disorders. However, less is known about the role of oligodendrocytes (OLs). Here, we applied digital neuropathological methods to compare the expression pattern of glial cells in the frontal cortex (FrCx) of human post-mortem samples from patients with C9-FTLD and C9-FTLD/ALS, sporadic FTLD (sFTLD), and healthy controls (HCs). We also compared MBP levels in CSF from an independent clinical FTD cohort. We observed an increase in GFAP, and Iba1 immunoreactivity in C9 and sFTLD compared to controls in the gray matter (GM) of the FrCx. We observed a decrease in MBP immunoreactivity in the GM and white matter (WM) of the FrCx of C9, compared to HC and sFTLD. There was a negative correlation between MBP and pTDP-43 in C9 in the WM of the FrCx. We observed an increase in CSF MBP concentrations in C9 and sFTLD compared to HC. In conclusion, the C9 expansion is associated with myelin loss in the frontal cortex. This loss of MBP may be a result of oligodendroglial dysfunction due to the expansion or the presence of pTDP-43 in OLs. Understanding these biological processes will help to identify specific pathways associated with the C9orf72 expansion.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Myelin Sheath , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Humans , Myelin Sheath/pathology
3.
Genome Res ; 32(4): 656-670, 2022 04.
Article in English | MEDLINE | ID: mdl-35332097

ABSTRACT

Genome-wide association studies (GWAS) have been highly informative in discovering disease-associated loci but are not designed to capture all structural variations in the human genome. Using long-read sequencing data, we discovered widespread structural variation within SINE-VNTR-Alu (SVA) elements, a class of great ape-specific transposable elements with gene-regulatory roles, which represents a major source of structural variability in the human population. We highlight the presence of structurally variable SVAs (SV-SVAs) in neurological disease-associated loci, and we further associate SV-SVAs to disease-associated SNPs and differential gene expression using luciferase assays and expression quantitative trait loci data. Finally, we genetically deleted SV-SVAs in the BIN1 and CD2AP Alzheimer's disease-associated risk loci and in the BCKDK Parkinson's disease-associated risk locus and assessed multiple aspects of their gene-regulatory influence in a human neuronal context. Together, this study reveals a novel layer of genetic variation in transposable elements that may contribute to identification of the structural variants that are the actual drivers of disease associations of GWAS loci.


Subject(s)
DNA Transposable Elements , Genome-Wide Association Study , Alu Elements , DNA Transposable Elements/genetics , Genetic Predisposition to Disease , Genetic Variation , Genome, Human , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci
4.
Neuropathol Appl Neurobiol ; 48(3): e12781, 2022 04.
Article in English | MEDLINE | ID: mdl-34825396

ABSTRACT

We report the neuropathological examination of a patient with Alzheimer's disease (AD) treated for 38 months with low doses of the BACE-1 inhibitor verubecestat. Brain examination showed small plaque size, reduced dystrophic neurites around plaques and reduced synaptic-associated Aß compared with a group of age-matched untreated sporadic AD (SAD) cases. Our findings suggest that BACE-1 inhibition has an impact on synaptic soluble Aß accumulation and neuritic derangement in AD.


Subject(s)
Alzheimer Disease , Thiadiazines , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cyclic S-Oxides/therapeutic use , Humans , Plaque, Amyloid/drug therapy , Plaque, Amyloid/pathology , Thiadiazines/therapeutic use
5.
Neurobiol Dis ; 159: 105512, 2021 11.
Article in English | MEDLINE | ID: mdl-34537329

ABSTRACT

PURPOSE OF THE REVIEW: The study of platelets in the context of neurodegenerative diseases is intensifying, and increasing evidence suggests that platelets may play an important role in the pathogenesis of neurodegenerative disorders. Therefore, we aim to provide a comprehensive overview of the role of platelets and their diverse activation pathways in the development of these diseases. RECENT FINDINGS: Platelets participate in synaptic plasticity, learning, memory, and platelets activated by exercise promote neuronal differentiation in several brain regions. Platelets also contribute to the immune response by modulating their surface protein profile and releasing pro- and anti-inflammatory mediators. In Alzheimer's disease, increased levels of platelet amyloid precursor protein raise the production of amyloid-beta peptides promoting platelet activation, triggering at the same time amyloid-beta fibrillation. In Parkinson's disease, increased platelet α-synuclein is associated with elevated ROS production and mitochondrial dysfunction. SUMMARY: In this review, we revise different platelet activation pathways, those classically involved in hemostasis and wound healing, and alternative activation pathways recently described in the context of neurodegenerative diseases, especially in Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Blood Platelets/metabolism , Parkinson Disease/metabolism , Platelet Activation/physiology , alpha-Synuclein/metabolism , Alzheimer Disease/physiopathology , Amyloid/metabolism , Animals , Blood Platelets/physiology , Cell Differentiation/physiology , Humans , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Neuronal Plasticity/physiology , Parkinson Disease/physiopathology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...