Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(29): e2317977121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990941

ABSTRACT

In a recent characterization of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variability present in 30 diagnostic samples from patients of the first COVID-19 pandemic wave, 41 amino acid substitutions were documented in the RNA-dependent RNA polymerase (RdRp) nsp12. Eight substitutions were selected in this work to determine whether they had an impact on the RdRp activity of the SARS-CoV-2 nsp12-nsp8-nsp7 replication complex. Three of these substitutions were found around the polymerase central cavity, in the template entry channel (D499G and M668V), and within the motif B (V560A), and they showed polymerization rates similar to the wild type RdRp. The remaining five mutations (P323L, L372F, L372P, V373A, and L527H) were placed near the nsp12-nsp8F contact surface; residues L372, V373, and L527 participated in a large hydrophobic cluster involving contacts between two helices in the nsp12 fingers and the long α-helix of nsp8F. The presence of any of these five amino acid substitutions resulted in important alterations in the RNA polymerization activity. Comparative primer elongation assays showed different behavior depending on the hydrophobicity of their side chains. The substitution of L by the bulkier F side chain at position 372 slightly promoted RdRp activity. However, this activity was dramatically reduced with the L372P, and L527H mutations, and to a lesser extent with V373A, all of which weaken the hydrophobic interactions within the cluster. Additional mutations, specifically designed to disrupt the nsp12-nsp8F interactions (nsp12-V330S, nsp12-V341S, and nsp8-R111A/D112A), also resulted in an impaired RdRp activity, further illustrating the importance of this contact interface in the regulation of RNA synthesis.


Subject(s)
Point Mutation , RNA, Viral , SARS-CoV-2 , Viral Nonstructural Proteins , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Polymerization , COVID-19/virology , Amino Acid Substitution , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Models, Molecular
2.
Microbiol Spectr ; 11(6): e0237323, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37888996

ABSTRACT

IMPORTANCE: Filoviruses are the causative agents of severe and often fatal hemorrhagic disease in humans. Menglà virus (MLAV) is a recently reported filovirus, isolated from fruit bats that is capable to replicate in human cells, representing a potential risk for human health. An in-depth structural and functional knowledge of MLAV proteins is an essential step for antiviral research on this virus that can also be extended to other emerging filoviruses. In this study, we determined the first crystal structures of the C-terminal domain (CTD) of the MLAV nucleoprotein (NP), showing important similarities to the equivalent domain in MARV. The structural data also show that the NP CTD has the ability to form large helical oligomers that may participate in the control of cytoplasmic inclusion body formation during viral replication.


Subject(s)
Ebolavirus , Filoviridae , Humans , Nucleoproteins/chemistry , Filoviridae/chemistry , Filoviridae/metabolism , Viral Proteins/metabolism
3.
PLoS Pathog ; 19(5): e1011373, 2023 05.
Article in English | MEDLINE | ID: mdl-37126532

ABSTRACT

Picornavirus genome replication takes place in specialized intracellular membrane compartments that concentrate viral RNA and proteins as well as a number of host factors that also participate in the process. The core enzyme in the replication machinery is the viral RNA-dependent RNA polymerase (RdRP) 3Dpol. Replication requires the primer protein 3B (or VPg) attached to two uridine molecules. 3B uridylylation is also catalysed by 3Dpol. Another critical interaction in picornavirus replication is that between 3Dpol and the precursor 3AB, a membrane-binding protein responsible for the localization of 3Dpol to the membranous compartments at which replication occurs. Unlike other picornaviruses, the animal pathogen foot-and-mouth disease virus (FMDV), encodes three non-identical copies of the 3B (3B1, 3B2, and 3B3) that could be specialized in different functions within the replication complex. Here, we have used a combination of biophysics, molecular and structural biology approaches to characterize the functional binding of FMDV 3B1 to the base of the palm of 3Dpol. The 1.7 Å resolution crystal structure of the FMDV 3Dpol -3B1 complex shows that 3B1 simultaneously links two 3Dpol molecules by binding at the bottom of their palm subdomains in an almost symmetric way. The two 3B1 contact surfaces involve a combination of hydrophobic and basic residues at the N- (G5-P6, R9; Region I) and C-terminus (R16, L19-P20; Region II) of this small protein. Enzyme-Linked Immunosorbent Assays (ELISA) show that the two 3B1 binding sites play a role in 3Dpol binding, with region II presenting the highest affinity. ELISA assays show that 3Dpol has higher binding affinity for 3B1 than for 3B2 or 3B3. Membrane-based pull-down assays show that 3B1 region II, and to a lesser extent also region I play essential roles in mediating the interaction of 3AB with the polymerase and its recruitment to intracellular membranes.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Picornaviridae , Animals , Foot-and-Mouth Disease Virus/genetics , Virus Replication/genetics , Picornaviridae/metabolism , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , Membrane Proteins/metabolism
4.
Antiviral Res ; 208: 105460, 2022 12.
Article in English | MEDLINE | ID: mdl-36334638

ABSTRACT

Usutu virus (USUV), is a mosquito-borne flavivirus currently spreading outside the African continent producing substantial avian mortality. In contrast, infected humans could exhibit mild neurological symptoms or remain asymptomatic. As in other flaviviruses, the capped USUV genome encodes three structural and seven non-structural (NS) proteins. Among the NS proteins, NS5 plays crucial roles in virus replication, harbouring the capping and methyltransferase (MTase) activities in its N-terminal domain and the RNA-dependent RNA polymerase (RdRP) activity at the C-terminus. In this work, we present the first structural and functional characterization of the USUV MTase domain. The first structure of the USUV MTase has been determined in complex with its natural ligands (S-adenosyl-L-methionine [SAM]) and S-adenosyl-L-homocysteine [SAH]) at 2.2 Å resolution, showing a molecular dimer in the crystal asymmetric unit. One molecule is bound to the methyl donor SAM while the second is bound to the reaction by-product SAH. Both molecules are almost identical and also show a high structural similarity to the MTase domains of other flaviviruses. The structure of the USUV MTase bound to the inhibitor sinefungin at 1.8 Å resolution is also described. Careful comparisons of the interactions in the SAM-binding cavity prompt us to hypothesize about the strength and weakness of the structure-based design of antivirals directed to the SAM/SAH binding site that could be effective to deal with this threat.


Subject(s)
Flavivirus , Methyltransferases , Flavivirus/genetics , Flavivirus/metabolism , Methyltransferases/chemistry , RNA-Dependent RNA Polymerase/genetics , S-Adenosylmethionine/metabolism , Viral Nonstructural Proteins/chemistry
5.
Viruses ; 13(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34834916

ABSTRACT

Viruses are obligate parasites that depend on a host cell for replication and survival. Consequently, to fully understand the viral processes involved in infection and replication, it is fundamental to study them in the cellular context. Often, viral infections induce significant changes in the subcellular organization of the host cell due to the formation of viral factories, alteration of cell cytoskeleton and/or budding of newly formed particles. Accurate 3D mapping of organelle reorganization in infected cells can thus provide valuable information for both basic virus research and antiviral drug development. Among the available techniques for 3D cell imaging, cryo-soft X-ray tomography stands out for its large depth of view (allowing for 10 µm thick biological samples to be imaged without further thinning), its resolution (about 50 nm for tomographies, sufficient to detect viral particles), the minimal requirements for sample manipulation (can be used on frozen, unfixed and unstained whole cells) and the potential to be combined with other techniques (i.e., correlative fluorescence microscopy). In this review we describe the fundamentals of cryo-soft X-ray tomography, its sample requirements, its advantages and its limitations. To highlight the potential of this technique, examples of virus research performed at BL09-MISTRAL beamline in ALBA synchrotron are also presented.


Subject(s)
Tomography, X-Ray/methods , Virus Diseases/virology , Virus Physiological Phenomena , Animals , Antiviral Agents/pharmacology , Humans , Tomography, X-Ray/instrumentation , Virus Diseases/diagnostic imaging , Virus Diseases/drug therapy , Viruses/chemistry , Viruses/drug effects
6.
Viruses ; 13(10)2021 09 23.
Article in English | MEDLINE | ID: mdl-34696332

ABSTRACT

Viruses are extraordinary biological entities that can only thrive as obligate intracellular parasites, exploiting other living cellular components in order to reproduce [...].


Subject(s)
RNA Viruses/physiology , Virus Replication/physiology , Host-Pathogen Interactions , Humans , Viral Proteins , Viruses
7.
Viruses ; 13(7)2021 06 28.
Article in English | MEDLINE | ID: mdl-34203380

ABSTRACT

RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication and transcription. The closed "right hand" architecture of RdRPs encircles seven conserved structural motifs (A to G) that regulate the polymerization activity. The four palm motifs, arranged in the sequential order A to D, are common to all known template dependent polynucleotide polymerases, with motifs A and C containing the catalytic aspartic acid residues. Exceptions to this design have been reported in members of the Permutotetraviridae and Birnaviridae families of positive single stranded (+ss) and double-stranded (ds) RNA viruses, respectively. In these enzymes, motif C is located upstream of motif A, displaying a permuted C-A-B-D connectivity. Here we study the details of the replication elongation process in the non-canonical RdRP of the Thosea asigna virus (TaV), an insect virus from the Permutatetraviridae family. We report the X-ray structures of three replicative complexes of the TaV polymerase obtained with an RNA template-primer in the absence and in the presence of incoming rNTPs. The structures captured different replication events and allowed to define the critical interactions involved in: (i) the positioning of the acceptor base of the template strand, (ii) the positioning of the 3'-OH group of the primer nucleotide during RNA replication and (iii) the recognition and positioning of the incoming nucleotide. Structural comparisons unveiled a closure of the active site on the RNA template-primer binding, before rNTP entry. This conformational rearrangement that also includes the repositioning of the motif A aspartate for the catalytic reaction to take place is maintained on rNTP and metal ion binding and after nucleotide incorporation, before translocation.


Subject(s)
RNA Viruses/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Crystallization , Crystallography, X-Ray , Insect Viruses , Protein Conformation , RNA Viruses/classification , RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/metabolism
8.
J Mol Biol ; 433(13): 166954, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33771572

ABSTRACT

Von Willebrand Factor (vWF), a 300-kDa plasma protein key to homeostasis, is cleaved at a single site by multi-domain metallopeptidase ADAMTS-13. vWF is the only known substrate of this peptidase, which circulates in a latent form and becomes allosterically activated by substrate binding. Herein, we characterised the complex formed by a competent peptidase construct (AD13-MDTCS) comprising metallopeptidase (M), disintegrin-like (D), thrombospondin (T), cysteine-rich (C), and spacer (S) domains, with a 73-residue functionally relevant vWF-peptide, using nine complementary techniques. Pull-down assays, gel electrophoresis, and surface plasmon resonance revealed tight binding with sub-micromolar affinity. Cross-linking mass spectrometry with four reagents showed that, within the peptidase, domain D approaches M, C, and S. S is positioned close to M and C, and the peptide contacts all domains. Hydrogen/deuterium exchange mass spectrometry revealed strong and weak protection for C/D and M/S, respectively. Structural analysis by multi-angle laser light scattering and small-angle X-ray scattering in solution revealed that the enzyme adopted highly flexible unbound, latent structures and peptide-bound, active structures that differed from the AD13-MDTCS crystal structure. Moreover, the peptide behaved like a self-avoiding random chain. We integrated the results with computational approaches, derived an ensemble of structures that collectively satisfied all experimental restraints, and discussed the functional implications. The interaction conforms to a 'fuzzy complex' that follows a 'dynamic zipper' mechanism involving numerous reversible, weak but additive interactions that result in strong binding and cleavage. Our findings contribute to illuminating the biochemistry of the vWF:ADAMTS-13 axis.


Subject(s)
ADAMTS13 Protein/metabolism , Protein Processing, Post-Translational , von Willebrand Factor/chemistry , von Willebrand Factor/metabolism , Cross-Linking Reagents/chemistry , Humans , Kinetics , Models, Molecular , Peptides/chemistry , Protein Binding , Solutions , von Willebrand Factor/isolation & purification
9.
J Virol ; 95(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33239452

ABSTRACT

The Birnavirus multifunctional protein VP3 plays an essential role coordinating the virus life cycle, interacting with the capsid protein VP2, with the RNA-dependent RNA polymerase VP1 and with the dsRNA genome. Furthermore, the role of this protein in controlling host cell responses triggered by dsRNA and preventing gene silencing has been recently demonstrated. Here we report the X-ray structure and dsRNA-binding activity of the N-terminal domain of Drosophila X virus (DXV) VP3. The domain folds in a bundle of three α-helices and arranges as a dimer, exposing to the surface a well-defined cluster of basic residues. Site directed mutagenesis combined with Electrophoretic Mobility Shift Assays (EMSA) and Surface Plasmon Resonance (SPR) revealed that this cluster, as well as a flexible and positively charged region linking the first and second globular domains of DXV VP3, are essential for dsRNA-binding. Also, RNA silencing studies performed in insect cell cultures confirmed the crucial role of this VP3 domain for the silencing suppression activity of the protein.IMPORTANCE The Birnavirus moonlighting protein VP3 plays crucial roles interacting with the dsRNA genome segments to form stable ribonucleoprotein complexes and controlling host cell immune responses, presumably by binding to and shielding the dsRNA from recognition by the host silencing machinery. The structural, biophysical and functional data presented in this work has identified the N-terminal domain of VP3 as responsible for the dsRNA-binding and silencing suppression activities of the protein in Drosophila X virus.

10.
Cell Stem Cell ; 27(6): 920-936.e8, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33147489

ABSTRACT

Zika virus (ZikV) is a flavivirus that infects neural tissues, causing congenital microcephaly. ZikV has evolved multiple mechanisms to restrict proliferation and enhance cell death, although the underlying cellular events involved remain unclear. Here we show that the ZikV-NS5 protein interacts with host proteins at the base of the primary cilia in neural progenitor cells, causing an atypical non-genetic ciliopathy and premature neuron delamination. Furthermore, in human microcephalic fetal brain tissue, ZikV-NS5 persists at the base of the motile cilia in ependymal cells, which also exhibit a severe ciliopathy. Although the enzymatic activity of ZikV-NS5 appears to be dispensable, the amino acids Y25, K28, and K29 that are involved in NS5 oligomerization are essential for localization and interaction with components of the cilium base, promoting ciliopathy and premature neurogenesis. These findings lay the foundation for therapies that target ZikV-NS5 multimerization and prevent the developmental malformations associated with congenital Zika syndrome.


Subject(s)
Ciliopathies , Zika Virus Infection , Zika Virus , Humans , Neurogenesis , Viral Nonstructural Proteins
11.
PLoS Pathog ; 15(4): e1007656, 2019 04.
Article in English | MEDLINE | ID: mdl-30951555

ABSTRACT

Zika virus (ZIKV), a member of the Flaviviridae family, has emerged as a major public health threat, since ZIKV infection has been connected to microcephaly and other neurological disorders. Flavivirus genome replication is driven by NS5, an RNA-dependent RNA polymerase (RdRP) that also contains a N-terminal methyltransferase domain essential for viral mRNA capping. Given its crucial roles, ZIKV NS5 has become an attractive antiviral target. Here, we have used integrated structural biology approaches to characterize the supramolecular arrangement of the full-length ZIKV NS5, highlighting the assembly and interfaces between NS5 monomers within a dimeric structure, as well as the dimer-dimer interactions to form higher order fibril-like structures. The relative orientation of each monomer within the dimer provides a model to explain the coordination between MTase and RdRP domains across neighboring NS5 molecules and mutational studies underscore the crucial role of the MTase residues Y25, K28 and K29 in NS5 dimerization. The basic residue K28 also participates in GTP binding and competition experiments indicate that NS5 dimerization is disrupted at high GTP concentrations. This competition represents a first glimpse at a molecular level explaining how dimerization might regulate the capping process.


Subject(s)
Protein Conformation , Protein Multimerization , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Zika Virus/enzymology , Crystallography, X-Ray , Humans , Models, Molecular , Protein Binding , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism
12.
Subcell Biochem ; 88: 39-71, 2018.
Article in English | MEDLINE | ID: mdl-29900492

ABSTRACT

Most emerging and re-emerging human and animal viral diseases are associated with RNA viruses. All these pathogens, with the exception of retroviruses, encode a specialized enzyme called RNA-dependent RNA polymerase (RdRP), which catalyze phosphodiester-bond formation between ribonucleotides (NTPs) in an RNA template-dependent manner. These enzymes function either as single polypeptides or in complex with other viral or host components to transcribe and replicate the viral RNA genome. The structures of RdRPs and RdRP catalytic complexes, currently available for several members of (+) ssRNA, (-)ssRNA and dsRNA virus families, have provided high resolution snapshots of the functional steps underlying replication and transcription of viral RNA genomes and their regulatory mechanisms.


Subject(s)
RNA Viruses , RNA, Viral , RNA-Dependent RNA Polymerase , Transcription, Genetic/physiology , Viral Proteins , Virus Replication/physiology , Animals , Biocatalysis , Humans , RNA Viruses/chemistry , RNA Viruses/physiology , RNA, Viral/biosynthesis , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
13.
PLoS Pathog ; 11(12): e1005265, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26625123

ABSTRACT

Thosea asigna virus (TaV), an insect virus belonging to the Permutatetraviridae family, has a positive-sense single-stranded RNA (ssRNA) genome with two overlapping open reading frames, encoding for the replicase and capsid proteins. The particular TaV replicase includes a structurally unique RNA-dependent RNA polymerase (RdRP) with a sequence permutation in the palm sub-domain, where the active site is anchored. This non-canonical arrangement of the RdRP palm is also found in double-stranded RNA viruses of the Birnaviridae family. Both virus families also share a conserved VPg sequence motif at the polymerase N-terminus which in birnaviruses appears to be used to covalently link a fraction of the replicase molecules to the 5'-end of the genomic segments. Birnavirus VPgs are presumed to be used as primers for replication initiation. Here we have solved the crystal structure of the TaV RdRP, the first non-canonical RdRP of a ssRNA virus, in its apo- form and bound to different substrates. The enzyme arranges as a stable dimer maintained by mutual interactions between the active site cleft of one molecule and the flexible N-terminal tail of the symmetrically related RdRP. The latter, partially mimicking the RNA template backbone, is involved in regulating the polymerization activity. As expected from previous sequence-based bioinformatics predictions, the overall architecture of the TaV enzyme shows important resemblances with birnavirus polymerases. In addition, structural comparisons and biochemical analyses reveal unexpected similarities between the TaV RdRP and those of Flaviviruses. In particular, a long loop protruding from the thumb domain towards the central enzyme cavity appears to act as a platform for de novo initiation of RNA replication. Our findings strongly suggest an unexpected evolutionary relationship between the RdRPs encoded by these distant ssRNA virus groups.


Subject(s)
RNA Viruses/chemistry , RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Amino Acid Sequence , Base Sequence , Crystallography, X-Ray , Molecular Sequence Data , Protein Conformation , RNA, Double-Stranded
14.
J Virol ; 89(21): 11165-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26311889

ABSTRACT

Genome replication is a critical step in virus life cycles. Here, we analyzed the role of the infectious bursal disease virus (IBDV) VP3, a major component of IBDV ribonucleoprotein complexes, on the regulation of VP1, the virus-encoded RNA-dependent RNA polymerase (RdRp). Data show that VP3, as well as a peptide mimicking its C-terminal domain, efficiently stimulates the ability of VP1 to replicate synthetic single-stranded RNA templates containing the 3' untranslated regions (UTRs) from the IBDV genome segments.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Viral/physiology , Infectious bursal disease virus/physiology , RNA, Viral/metabolism , Viral Structural Proteins/metabolism , Viral Structural Proteins/physiology , Virus Replication/genetics , Infectious bursal disease virus/genetics , Polymerization , RNA, Viral/genetics
15.
Viruses ; 7(8): 4438-60, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26258787

ABSTRACT

RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication within the infected cells. RdRP function is critical not only for the virus life cycle but also for its adaptive potential. The combination of low fidelity of replication and the absence of proofreading and excision activities within the RdRPs result in high mutation frequencies that allow these viruses a rapid adaptation to changing environments. In this review, we summarize the current knowledge about structural and functional aspects on RdRP catalytic complexes, focused mainly in the Picornaviridae family. The structural data currently available from these viruses provided high-resolution snapshots for a range of conformational states associated to RNA template-primer binding, rNTP recognition, catalysis and chain translocation. As these enzymes are major targets for the development of antiviral compounds, such structural information is essential for the design of new therapies.


Subject(s)
Picornaviridae/enzymology , Picornaviridae/physiology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Virus Replication , Animals , Humans , Models, Molecular , Protein Conformation
16.
IUCrJ ; 1(Pt 6): 492-504, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25485129

ABSTRACT

For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.

17.
PLoS One ; 7(9): e45957, 2012.
Article in English | MEDLINE | ID: mdl-23049903

ABSTRACT

RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV) displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.


Subject(s)
Birnaviridae/genetics , RNA Interference , RNA, Double-Stranded/genetics , Agrobacterium/metabolism , Apoptosis , Gene Silencing , Genes, Reporter , Green Fluorescent Proteins/metabolism , Models, Genetic , Orthomyxoviridae/metabolism , Polymerase Chain Reaction/methods , Protein Structure, Tertiary , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Nicotiana/genetics , Viral Nonstructural Proteins/metabolism
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 10): 1263-6, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23027763

ABSTRACT

Thosea asigna virus (TaV) is a positive-sense, single-stranded RNA (ssRNA) virus that belongs to the Permutotetravirus genera within the recently created Permutotetraviridae family. The genome of TaV consists of an RNA segment of about 5.700 nucleotides with two open reading frames, encoding for the replicase and capsid protein. The particular TaV replicase does not contain N7-methyl transferase and helicase domains but includes a structurally unique RNA-dependent RNA polymerase (RdRp) with a sequence permutation in the domain where the active site is anchored. This architecture is also found in double-stranded RNA viruses of the Birnaviridae family. Here we report the purification and preliminary crystallographic studies TaV RdRp. The enzyme was crystallized by the sitting-drop vapour diffusion method using PEG 8K and lithium sulfate as precipitants. Two different crystal forms were obtained: native RdRp crystallized in space group P2(1)2(1)2 and diffracts up to 2.1 Šand the RdRp-Lu(3+) derivative co-crystals belong to the C222(1) space group, diffracting to 3.0 Šresolution. The structure of TaV RdRp represents the first structure of a non-canonical RdRp from ssRNA viruses.


Subject(s)
RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/chemistry , Crystallization , Crystallography, X-Ray , RNA-Dependent RNA Polymerase/isolation & purification
19.
Biochemistry ; 51(11): 2169-71, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22385109

ABSTRACT

2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous enzymes that have been implicated in peroxide-mediated signaling of markedly different processes, such as cancer and photosynthesis. A highly conserved C-terminal extension of eukaryotic homologues modulates both the overoxidation of cysteines and the formation of oligomers. Here, we reveal that the plant counterpart regulates the self-polymerization of 2-Cys Prx triggered by ATP and Mg(2+). This feature is of particular importance under oxidative stress because the interaction of ATP with 2-Cys Prx rapidly integrates nonredox chemistry of signaling pathways into a network hub governed by multiple redox transformations at cysteine residues.


Subject(s)
Adenosine Triphosphate/metabolism , Chloroplasts/chemistry , Cysteine/genetics , Peroxiredoxins/chemistry , Plant Proteins/chemistry , Adenosine Triphosphate/chemistry , Binding Sites , Cysteine/metabolism , Oxidation-Reduction , Oxidative Stress , Peroxiredoxins/metabolism , Plant Proteins/metabolism , Signal Transduction
20.
J Biol Chem ; 286(26): 23441-51, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21525006

ABSTRACT

2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous peroxidases with important roles in cellular antioxidant defense and hydrogen peroxide-mediated signaling. Post-translational modifications of conserved cysteines cause the transition from low to high molecular weight oligomers, triggering the functional change from peroxidase to molecular chaperone. However, it remains unclear how non-covalent interactions of 2-Cys Prx with metabolites modulate the quaternary structure. Here, we disclose that ATP and Mg(2+) (ATP/Mg) promote the self-polymerization of chloroplast 2-Cys Prx (polypeptide 23.5 kDa) into soluble higher order assemblies (>2 MDa) that proceed to insoluble aggregates beyond 5 mM ATP. Remarkably, the withdrawal of ATP or Mg(2+) brings soluble oligomers and insoluble aggregates back to the native conformation without compromising the associated functions. As confirmed by transmission electron microscopy, ATP/Mg drive the toroid-like decamers (diameter 13 nm) to the formation of large sphere-like particles (diameter ∼30 nm). Circular dichroism studies on ATP-labeled 2-Cys Prx reveal that ATP/Mg enhance the proportion of ß-sheets with the concurrent decrease in the content of α-helices. In line with this observation, the formation of insoluble aggregates is strongly prevented by 2,2,2-trifluoroethanol, a cosolvent employed to induce α-helical conformations. We further find that the response of self-polymerization to ATP/Mg departs abruptly from that of the associated peroxidase and chaperone activities when two highly conserved residues, Arg(129) and Arg(152), are mutated. Collectively, our data uncover that non-covalent interactions of ATP/Mg with 2-Cys Prx modulate dynamically the quaternary structure, thereby coupling the non-redox chemistry of cell energy with redox transformations at cysteine residues.


Subject(s)
Adenosine Triphosphate/chemistry , Chloroplasts/enzymology , Magnesium/chemistry , Peroxiredoxins/chemistry , Plant Proteins/chemistry , Protein Multimerization , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Chloroplasts/genetics , Circular Dichroism , Magnesium/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Structure, Quaternary , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...