Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(30): e202200241, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35285984

ABSTRACT

IspG (also called GcpE) is an oxygen-sensitive [4Fe-4S] enzyme catalyzing the penultimate step of the methylerythritol phosphate (MEP) pathway, a validated target for drug development. It converts 2-C-methyl-d-erythritol-2,4-cyclo-diphosphate (MEcPP) into (E)-4-hydroxy-3-methyl-but-2-enyl-1-diphosphate (HMBPP). The reaction, assimilated to a reductive dehydration, involves redox partners responsible for the formal transfer of two electrons to substrate MEcPP. The 2-vinyl analogue of MEcPP was designed to generate conjugated species during enzyme catalysis, with the aim of providing new reactive centers to be covalently trapped by neighboring amino acid residues. The synthesized substrate analogue displayed irreversible inhibition towards IspG. Furthermore, we have shown that electron transfer occurs prior to inhibition; this might designate conjugated intermediates as probable affinity tags through covalent interaction at the catalytic site. This is the first report of an irreversible inhibitor of the IspG metalloenzyme.


Subject(s)
Diphosphates , Erythritol , Catalytic Domain , Electron Transport , Erythritol/metabolism , Pyrimidines
2.
Environ Microbiol Rep ; 6(5): 459-67, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25646536

ABSTRACT

Siderophores are organic chelators produced by microorganisms to fulfil their iron requirements. Siderophore-promoted dissolution of iron-bearing minerals has been clearly documented for some siderophores, but few studies have addressed metabolizing siderophore-producing bacteria. We investigated iron acquisition from clays by fluorescent Pseudomonads, bacteria that are ubiquitous in the environment. We focused on the interactions between smectite and Pseudomonas aeruginosa, a bacterium producing two structurally different siderophores: pyoverdine and pyochelin. The presence of smectite in iron-limited growth media promoted planktonic growth of P. aeruginosa and biofilm surrounding the smectite aggregates. Chemical analysis of the culture media indicated increases in the dissolved silicon, iron and aluminium concentrations following smectite supplementation. The use of P. aeruginosa mutants unable to produce either one or both of the two siderophores indicated that pyoverdine, the siderophore with the higher affinity for iron, was involved in iron and aluminium solubilization by the wild-type strain. However, in the absence of pyoverdine, pyochelin was also able to solubilize iron but with a twofold lower efficiency. In conclusion, pyoverdine and pyochelin, two structurally different siderophores, can solubilize structural iron from smectite and thereby make it available for bacterial growth.


Subject(s)
Pseudomonas aeruginosa/metabolism , Siderophores/metabolism , Silicates/metabolism , Iron/metabolism , Pseudomonas aeruginosa/growth & development , Silicates/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...