Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stress ; 8: 51-55, 2024.
Article in English | MEDLINE | ID: mdl-38800095

ABSTRACT

In a recent issue in Nature Cell Biology, Sung Min Son et al. unveil a novel layer in the regulation of the mTORC1/autophagy axis by EP300 which can undergo nucleocytoplasmic shuttling in response to alterations in nutrient availability. The study highlights that, in Hutchinson-Gilford progeria syndrome, overabundant cytoplasmic EP300 results in mTORC1 hyperactivation and impaired autophagy, potentially contributing to premature and accelerated aging.

2.
Autophagy ; 19(7): 1901-1915, 2023 07.
Article in English | MEDLINE | ID: mdl-36740766

ABSTRACT

Guanine-quadruplex structures (G4) are unusual nucleic acid conformations formed by guanine-rich DNA and RNA sequences and known to control gene expression mechanisms, from transcription to protein synthesis. So far, a number of molecules that recognize G4 have been developed for potential therapeutic applications in human pathologies, including cancer and infectious diseases. These molecules are called G4 ligands. When the biological effects of G4 ligands are studied, the analysis is often limited to nucleic acid targets. However, recent evidence indicates that G4 ligands may target other cellular components and compartments such as lysosomes and mitochondria. Here, we summarize our current knowledge of the regulation of lysosome by G4 ligands, underlying their potential functional impact on lysosome biology and autophagic flux, as well as on the transcriptional regulation of lysosomal genes. We outline the consequences of these effects on cell fate decisions and we systematically analyzed G4-prone sequences within the promoter of 435 lysosome-related genes. Finally, we propose some hypotheses about the mechanisms involved in the regulation of lysosomes by G4 ligands.


Subject(s)
Autophagy , G-Quadruplexes , Humans , Ligands , DNA/metabolism , Guanine
3.
Drug Discov Today ; 28(12): 103808, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38414431

ABSTRACT

Lung cancer (LC) remains a leading cause of mortality worldwide, and new therapeutic strategies are urgently needed. One such approach revolves around the utilization of four-stranded nucleic acid secondary structures, known as G-quadruplexes (G4), which are formed by G-rich sequences. Ligands that bind selectively to G4 structures present a promising strategy for regulating crucial cellular processes involved in the progression of LC, rendering them potent agents for lung cancer treatment. In this review, we offer a summary of recent advancements in the development of G4 ligands capable of targeting specific genes associated with the development and progression of lung cancer.


Subject(s)
G-Quadruplexes , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...