Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Curr Osteoporos Rep ; 16(6): 775-778, 2018 12.
Article in English | MEDLINE | ID: mdl-30393831

ABSTRACT

The human fibula responds to its mechanical environment differently from the tibia accordingly with foot usage. Fibula structure is unaffected by disuse, and is stronger concerning lateral bending in soccer players (who evert and rotate the foot) and weaker in long-distance runners (who jump while running) with respect to untrained controls, along the insertion region of peroneus muscles. These features, strikingly associated to the abilities of the fibulae of predator and prey quadrupeds to manage uneven surfaces and to store elastic energy to jump, respectively, suggest that bone mechanostat would control bone properties with high selective connotations beyond structural strength.


Subject(s)
Bone Density/physiology , Exercise/physiology , Fibula/physiology , Stress, Mechanical , Biomechanical Phenomena , Humans
2.
J Musculoskelet Neuronal Interact ; 17(1): 399-408, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28250244

ABSTRACT

OBJECTIVE: We aimed at comparing markers of bone metabolism during unloading in young and older men, and to assess countermeasure effectiveness. METHODS: 16 older (60±2 years) and 8 younger men (23±3 years) underwent bed rest (BR) for 14 days. A subgroup of the Older performed cognitive training during BR and supplemented protein and potassium bicarbonate afterwards. Biochemical markers of bone and calcium/phosphate metabolism were assessed. RESULTS: At baseline urinary NTX and CTX were greater in younger than in older subjects (P<0.001), but increased during BR (P<0.001) by a similar amount (P>0.17). P1NP was greater in young than in older subjects (P<0.001) and decreased during BR in the Young (P<0.001). Sclerostin increased during BR across groups (P=0.016). No systematic effects of the countermeasure were observed. CONCLUSION: In men, older age did not affect control of bone metabolism, but bone turnover was reduced. During BR formation markers were reduced only in younger men whereas resorption markers increased to a comparable extent. Thus, we assume that older men are not at an elevated, and possibly even at a reduced risk to lose bone when immobilized.


Subject(s)
Aging/metabolism , Bed Rest/trends , Bone Remodeling/physiology , Bone Resorption/metabolism , Bed Rest/adverse effects , Biomarkers/metabolism , Humans , Male , Middle Aged , Time Factors , Young Adult
3.
Osteoporos Int ; 28(2): 633-641, 2017 02.
Article in English | MEDLINE | ID: mdl-27734100

ABSTRACT

Fibula response to disuse is unknown; we assessed fibula bone in spinal cord injury (SCI) patients and able-bodied counterparts. Group differences were smaller than in the neighbouring tibia which could not be explained by bone geometry. Differential adaptation of the shank bones may indicate previously unknown mechanoadaptive behaviours of bone. INTRODUCTION: The fibula supports only a small and highly variable proportion of shank compressive load (-8 to +19 %), and little is known about other kinds of stresses. Hence, whilst effects of habitual loading on tibia are well-known, fibula response to disuse is difficult to predict. METHODS: Therefore, we assessed fibular bone strength using peripheral quantitative computed tomography (pQCT) at 5 % increments from 5 to 90 % distal-proximal tibia length in nine participants with long-term spinal cord injury (SCI; age 39.2 ± 6.2 years, time since injury 17.8 ± 7.4 years), representing a cross-sectional model of long-term disuse and in nine able-bodied counterparts of similar age (39.6 ± 7.8 years), height and mass. RESULTS: There was no group difference in diaphyseal fibula total bone mineral content (BMC) (P = 0.22, 95 % CIs -7.4 % to -13.4 % and +10.9 % to +19.2 %). Site by group interactions (P < 0.001) revealed 27 and 22 % lower BMC in SCI at 5 and 90 % (epiphyseal) sites only. Cortical bone geometry differed at mid and distal diaphysis, with lower endocortical circumference and greater cortical thickness in SCI than able-bodied participants in this region only (interactions both P < 0.01). Tibia bone strength was also assessed; bone by group interactions showed smaller group differences in fibula than tibia for all bone parameters, with opposing effects on distal diaphysis geometry in the two bones (all Ps < 0.001). CONCLUSIONS: These results suggest that the structure of the fibula diaphysis is not heavily influenced by compressive loading, and only mid and distal diaphysis are influenced by bending and/or torsional loads. The fibula is less influenced by disuse than the tibia, which cannot satisfactorily be explained by differences in bone geometry or relative changes in habitual loading in disuse. Biomechanical study of the shank loading environment may give new information pertaining to factors influencing bone mechanoadaptation.


Subject(s)
Fibula/physiopathology , Paraplegia/physiopathology , Spinal Cord Injuries/physiopathology , Adult , Bone Density/physiology , Case-Control Studies , Diaphyses/diagnostic imaging , Diaphyses/physiopathology , Epiphyses/diagnostic imaging , Epiphyses/physiopathology , Fibula/diagnostic imaging , Fibula/pathology , Humans , Male , Middle Aged , Paraplegia/diagnostic imaging , Spinal Cord Injuries/diagnostic imaging , Tibia/diagnostic imaging , Tibia/physiopathology , Tomography, X-Ray Computed/methods , Weight-Bearing/physiology
4.
Eur Phys J C Part Fields ; 76(6): 349, 2016.
Article in English | MEDLINE | ID: mdl-28280440

ABSTRACT

Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

5.
J Musculoskelet Neuronal Interact ; 15(1): 10-22, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25730648

ABSTRACT

To compare the independent influence of mechanical and non-mechanical factors on bone features, multiple regression analyses were performed between pQCT indicators of radius and tibia bone mass, mineralization, design and strength as determined variables, and age or time since menopause (TMP), body mass, bone length and regional muscles' areas as selected determinant factors, in Caucasian, physically active, untrained healthy men and pre- and post-menopausal women. In men and pre-menopausal women, the strongest influences were exerted by muscle area on radial features and by both muscle area and bone length on the tibia. Only for women, was body mass a significant factor for tibia traits. In men and pre-menopausal women, mass/design/strength indicators depended more strongly on the selected determinants than the cortical vBMD did (p<0.01-0.001 vs n.s.), regardless of age. However, TMP was an additional factor for both bones (p<0.01-0.001). The selected mechanical factors (muscle size, bone lengths) were more relevant than age/TMP or body weight to the development of allometrically-related bone properties (mass/design/strength), yet not to bone tissue 'quality' (cortical vBMD), suggesting a determinant, rather than determined role for cortical stiffness. While the mechanical impacts of muscles and bone levers on bone structure were comparable in men and pre-menopausal women, TMP exerted a stronger impact than allometric or mechanical factors on bone properties, including cortical vBMD.


Subject(s)
Radius/diagnostic imaging , Radius/physiology , Tibia/diagnostic imaging , Tibia/physiology , Adult , Age Factors , Aged , Aged, 80 and over , Anthropometry , Biomechanical Phenomena , Bone Density/physiology , Female , Humans , Male , Middle Aged , Postmenopause , Sex Factors , Tomography, X-Ray Computed
6.
J Musculoskelet Neuronal Interact ; 14(1): 29-40, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24583538

ABSTRACT

The pQCT-assessed Bone Strength Indices (BSI's, SSI) depend on the product of a 'quality' indicator, the cortical vBMD (vCtD), and a 'design' indicator, one of the cross-sectional moments of inertia or related variables (MIs) in long bones. As the MIs vary naturally much more than the vCtD and represent different properties, it could be that the variation of the indices might not reflect the relative mechanical impact of the variation of their determinant factors in different individuals or circumstances. To understand this problem, we determined the vCtD and MI's in tibia scans of 232 healthy men and pre- and post-MP women, expressed in SD of the means calculated for each group, and analyzed the independent influence of 1 SD unit of variation of each factor on that of the indices by multiple correlations. Results showed: 1. that the independent influence of the MIs on the indices was generally larger than that of the vCtD, and 2. that in post-MP women the influence of the vCtD was larger than it was in the other groups. This confirms the view that inter-individual variation of vCtD is comparatively small, and that mechanical competence of human bone is mostly determined by 'design' factors.


Subject(s)
Bone and Bones/diagnostic imaging , Bone and Bones/physiology , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Bone Density/physiology , Female , Humans , Male , Middle Aged , Postmenopause , Premenopause , Tomography, X-Ray Computed
7.
J Musculoskelet Neuronal Interact ; 13(2): 185-94, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23728105

ABSTRACT

Some pharmacologic effects on bone modeling may not be evident in studies of remodeling skeletons. This study analyzes some effects of olpadronate on cortical bone modeling and post-yield properties in femurs diaphyses (virtually only-modeling bones) of young rats by mid-diaphyseal pQCT scans and bending tests. We studied 20/22 male/female animals traetad orally with olpadronate (45-90 mg/kg/d, 3 months) and 8/9 untreated controls. Both OPD doses enhanced diaphyseal cross-sectional moments of inertia (CSMI) with no change in cortical vBMD and elastic modulus. Yield stiffness and strength were mildly increased. Post-yield strength, deflection and energy absorption were strikingly enhanced. Ultimate strength was enhanced mainly because of effects on bone mass/geometry and post-yield properties. The large improvement of post-yield properties could be explained by improvements in bone geometry. Improvements in bone mass/geometry over weight-bearing needs suggest an enhanced modeling-related response to mechanical stimuli. Effects on tissue microstructural factors (not measured) could not be excluded. Results reveal novel olpadronate effects on bone strength and toughness unrelated to tissue mineralization and stiffness, even at high doses. Further studies could establish whether this could also occur in modeling-remodeling skeletons. If so, they could counteract the negative impact of anti-remodeling effects of bisphosphonates on bone strength.


Subject(s)
Bone Density Conservation Agents/pharmacology , Bone Remodeling/drug effects , Calcification, Physiologic/drug effects , Diphosphonates/pharmacology , Analysis of Variance , Animals , Biomechanical Phenomena , Bone Density/drug effects , Diaphyses/anatomy & histology , Diaphyses/physiology , Dose-Response Relationship, Drug , Elastic Modulus , Elasticity , Female , Femur/anatomy & histology , Femur/physiology , Male , Rats , Rats, Wistar , Sex Characteristics , Software , Tomography
8.
J Musculoskelet Neuronal Interact ; 13(2): 195-205, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23728106

ABSTRACT

In a pQCT study of running-trained and untrained men and women we had shown that bone mass distribution along the tibia was adapted to the usage-derived stress pattern. To study the possible association between the efficiency of diaphyseal design and bone material stiffness, we extend the analysis of the same sample to correlate pQCT indicators of the distribution (CSMIs), mass (BMC), and density (vBMD) of cortical bone tissue as descriptors of "distribution/mass" (d/m) or "distribution/quality" (d/q) relationships. The d/m and d/c curves followed positive (exponential) and negative (hyperbolic-like) equations, respectively. Distribution curves of r coefficients throughout the bone were all bell-shaped, reaching a maximum towards the mid-diaphysis. The CSMIs and BMC were higher, and vBMD was lower in men than women and in runners than non-runners. The d/m relationships were described by unique curves for all groups while d/q relationships were better adjusted to separate curves for men and women. Results support that: 1. diaphyseal design reflects the relative influence of bending/torsion stress along the bones, tending to minimize bone mass; 2. there is a trade-off between cortical bone "quality" and distribution; 3. d/m and d/q relationships are related to bone mechanical environment, and 4. d/q relationships are affected by sex.


Subject(s)
Bone Density/physiology , Physical Conditioning, Human/physiology , Tibia/anatomy & histology , Tomography, X-Ray Computed/methods , Adult , Anatomy, Cross-Sectional , Biomechanical Phenomena , Data Interpretation, Statistical , Diaphyses/anatomy & histology , Diaphyses/diagnostic imaging , Elasticity , Female , Humans , Male , Tibia/diagnostic imaging
9.
Article in English | MEDLINE | ID: mdl-19949281

ABSTRACT

OBJECTIVE: To investigate whether athletic participation allows master athletes to preserve their good bone health into old age. METHODS: Bone strength indicators of the tibia and the radius were obtained of master runners and race-walkers (n=300) competing at World and European Master Championships and of 75 sedentary controls, all aged 33-94 yrs. RESULTS: In the tibia, diaphyseal cortical area (Ar.Ct), polar moment of resistance (RPol) and trabecular bone mineral density (vBMD) were generally greater in athletes than controls at all ages. In the athletes, but not the controls, Ar.Ct, RPol (females) and trabecular vBMD were negatively correlated with age (p<0.01). Radius measures were comparable between athlete and control groups at all ages. The amalgamated data revealed negative correlations of age with Ar.Ct, RPol (females), cortical vBMD and trabecular vBMD (males; p<0.005) and positive correlations with endocortical circumference (p<0.001). CONCLUSION: This cross-sectional study found age-related differences in tibial bone strength indicators of master athletes, but not sedentary controls, thus, groups becoming more similar with advancing age. Age-related differences were noticeable in the radius too, without any obvious group difference. Results are compatible with the notion that bones adapt to exercise-specific forces throughout the human lifespan.


Subject(s)
Aging/physiology , Bone Density/physiology , Bone and Bones/physiology , Exercise/physiology , Adult , Age Factors , Aged , Aged, 80 and over , Analysis of Variance , Bone and Bones/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Organ Size , Radiography , Regression Analysis , Running , Sex Factors
10.
Bone ; 45(1): 91-7, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19332164

ABSTRACT

Mechanical loading is thought to be a determinant of bone mass and geometry. Both ground reaction forces and tibial strains increase with running speed. This study investigates the hypothesis that surrogates of bone strength in male and female master sprinters, middle and long distance runners and race-walkers vary according to discipline-specific mechanical loading from sedentary controls. Bone scans were obtained by peripheral Quantitative Computed Tomography (pQCT) from the tibia and from the radius in 106 sprinters, 52 middle distance runners, 93 long distance runners and 49 race-walkers who were competing at master championships, and who were aged between 35 and 94 years. Seventy-five age-matched, sedentary people served as control group. Most athletes of this study had started to practice their athletic discipline after the age of 20, but the current training regime had typically been maintained for more than a decade. As hypothesised, tibia diaphyseal bone mineral content (vBMC), cortical area and polar moment of resistance were largest in sprinters, followed in descending order by middle and long distance runners, race-walkers and controls. When compared to control people, the differences in these measures were always >13% in male and >23% in female sprinters (p<0.001). Similarly, the periosteal circumference in the tibia shaft was larger in male and female sprinters by 4% and 8%, respectively, compared to controls (p<0.001). Epiphyseal group differences were predominantly found for trabecular vBMC in both male and female sprinters, who had 15% and 18% larger values, respectively, than controls (p<0.001). In contrast, a reverse pattern was found for cortical vBMD in the tibia, and only few group differences of lower magnitude were found between athletes and control people for the radius. In conclusion, tibial bone strength indicators seemed to be related to exercise-specific peak forces, whilst cortical density was inversely related to running distance. These results may be explained in two, non-exclusive ways. Firstly, greater skeletal size may allow larger muscle forces and power to be exerted, and thus bias towards engagement in athletics. Secondly, musculoskeletal forces related to running can induce skeletal adaptation and thus enhance bone strength.


Subject(s)
Radius/anatomy & histology , Radius/diagnostic imaging , Running/physiology , Tibia/anatomy & histology , Tibia/diagnostic imaging , Tomography, X-Ray Computed , Walking/physiology , Adult , Aged , Aged, 80 and over , Case-Control Studies , Diaphyses/anatomy & histology , Exercise/physiology , Female , Humans , Male , Middle Aged , Organ Size , Puberty
11.
J Musculoskelet Neuronal Interact ; 4(1): 1-11, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15615073

ABSTRACT

New concepts and methods of study in bone biomechanics defy the prevailing idea that bone strength is determined by a systemically-controlled "mineralized mass" which grows until reaching a peak and then is lost at individually-specific rates. In case of bones, "mass" represents actually the substratum of a structure, the stiffness of which does not depend on the mass, but on the intrinsic stiffness and the spatial distribution of the mineralized material. A feed-back system called "bone mechanostat" seems to orient the osteoblastic and osteoclastic processes of bone, modeling and remodeling, according to the sensing by osteocytes of strains caused in the structure by mechanical usage of the skeleton, in specific directions as determined principally by the customary contractions of regional muscles and impact forces. The endocrine-metabolic systems, crucial for the normal skeletal development, modulate the work of osteocytes, blasts and clasts in a systemic way (i.e., not related to a specific direction of the stimuli). Therefore, they tend actually to interact with, rather than contribute to, the biomechanical control of bone structure. Furthermore, no feed-back loop enabling a cybernetic relationship of those systems with bone is known. Instead of passively letting hormones regulate their "mass" in order to optimize their strength, bones would actively self-regulate their architecture following an anisotropic pattern in order to optimize their stiffness (the only known variable to be ever controlled in the skeleton) and strength "despite of" the endocrine systems. Three practical questions derive from those ideas: 1. Osteoporoses are not "intense osteopenias" but "osteopenic fragilities". 2. The diagnosis of osteopenia could be solved densitometrically; but that of bone fragility is a biomechanical problem which requires auxiliary resources for evaluating the stiffness and the spatial distribution of the mineralized material. 3. Osteopenias and osteoporoses should be on time evaluated as related to the mass or strength of the regional muscles, respectively, in order to differentiate between the "primary" (intrinsic lesion of the mechanostat) or "secondary" (systemic) etiologies and the biomechanical origin (disuse) in each case, with important therapeutic implications.


Subject(s)
Bone Density/physiology , Bone and Bones/physiology , Mechanotransduction, Cellular/physiology , Muscle, Skeletal/physiology , Biomechanical Phenomena , Bone Diseases, Metabolic/diagnosis , Bone Diseases, Metabolic/physiopathology , Densitometry/methods , Densitometry/standards , Endocrine System/physiology , Feedback/physiology , Humans
12.
Exp Clin Endocrinol Diabetes ; 112(8): 444-50, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15372365

ABSTRACT

This observational study analyzes Ca-P metabolism and its impact on bone mass accrual and density and the muscle-bone mass/mass relationships in male and female children and adolescents who were parathyroidectomized because of thyroid carcinoma. Two hundred and eight children and adolescents (119 girls and 89 boys) from Gomel city (Belarus) and its rural surroundings were referred to our institution after having undergone total thyroidectomy for the treatment of advanced papillary thyroid cancer. A subgroup of children with demonstrated primary hypoparathyroidism received dihydrotachysterol (AT-10) and/or Ca supplementation. Among routine procedures over a maximum follow-up period of 5 years (average 3.7 years, maximum 8 visits), whole-body scans were taken using dual energy X-ray absorptiometry (DXA) at each visit in order to determine whole-body bone mineral content (TBMC), projected "areal" bone mineral density (TBMD), total lean mass (TLM) and total fat mass (TFM). The average serum Ca, P and AP concentrations over the whole observation period were significantly different between the groups; however, TBMC z-scores for all studied children were statistically similar in all visits. In girls, no between-group differences in height- and weight-controlled TBMC and TBMD or the TBMC/TLM ratio were observed (ANCOVA) and supplementation exerted no effect on these data, suggesting that the total bone mass accrual was not impaired by PTH deficiency in the studied conditions. However, non-supplemented boys showed lower values of the TBMC/TLM ratio than girls, and supplementation normalized these values in direct correlation with the induced improvement in serum P availability to bone. Results indicate that the primary impairment in parathyroid function and bone metabolism indicators in the thyroidectomized children was unrelated to any measurable change in crude bone mass values. However, in boys this condition impaired the TBMC/TLM ratio in such a way that the administered supplementation could normalize it as a function of improved P availability. Girls' skeleton seemed to have been naturally protected against the negative metabolic effect of the studied condition. An estrogen-induced enhancement of the biomechanical impact of muscle contractions on bone mass and structure could not be excluded in this group.


Subject(s)
Bone Density , Calcium/therapeutic use , Dihydrotachysterol/therapeutic use , Hypoparathyroidism/drug therapy , Thyroidectomy/methods , Absorptiometry, Photon , Adolescent , Alkaline Phosphatase/blood , Body Composition , Calcium/blood , Carcinoma, Papillary/surgery , Child , Female , Follow-Up Studies , Humans , Hypoparathyroidism/etiology , Male , Parathyroid Hormone/blood , Phosphates/blood , Republic of Belarus , Sex Factors , Thyroid Neoplasms/surgery
13.
Bone ; 35(1): 283-95, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15207769

ABSTRACT

A whole-body DXA study of 1450 healthy Caucasian individuals [Bone 22 (1998) 683] found that mineral mass, either crude (BMC) or statistically adjusted to fat mass (FM-adjusted BMC), correlated linearly with lean mass (LM, proportional to muscle mass). The results showed similar slopes but decreasing intercepts (ordinate values) in the order: pre-MP women > men > post-MP women > children. This supports the hypothesis that sex hormones influence the control of bone status by muscle strength in all species. Now we further study those relationships in 2512 healthy Hispanic adults (307 men, 753 pre-MP women, 1452 post-MP women), including separate determinations in their upper and lower limbs. The slopes of the BMC or FM-adjusted BMC vs. LM relationships were parallel in all the studied regions. However, region-related differences were found between the ordinates of the curves. In the whole body, the crude-BMC/LM relationships showed the same ordinate differences as previously observed. In the lower limbs, those differences were smaller in magnitude but highly significant, showing the order: pre-MP women > men = post-MP women. In the upper limbs, the decreasing ordinate order was: men > pre-MP women > post-MP women. After fat adjustment of the BMC, order in both limbs was: men > pre-MP women > post-MP women. Parallelism of the curves was maintained in all cases. LM had a larger independent influence on these results than FM, body weight, or age. The parallelism of the curves supports the idea that a common biomechanical control of bones by muscles occurs in humans. Results suggest that sex-hormone-associated differences in DXA-assessed muscle-bone proportionality in humans could vary according to the region studied. This could be related to the different weight-bearing nature of the musculoskeletal structures studied. Besides the obvious anthropometric associations, FM would exert a mechanical effect as a component of body weight, evident in the lower limbs, while muscle contractions would induce a more significant, dynamical effect in both lower and upper limbs. Muscles seem to exert a larger influence than FM, body weight, and age on BMC in the whole body and lower limbs, regardless of the gender and reproductive status of the individual. The muscle-bone relationships studied may provide a rationale for a future differential diagnosis between disuse-related and other types of osteopenia.


Subject(s)
Body Weight , Bone Density , Bone and Bones/physiology , Muscle, Skeletal/physiology , Absorptiometry, Photon , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Bone and Bones/diagnostic imaging , Extremities , Female , Humans , Male , Muscle, Skeletal/diagnostic imaging , Regression Analysis , Retrospective Studies
14.
J Bone Miner Res ; 18(3): 539-43, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12619939

ABSTRACT

Treatment with teriparatide (rDNA origin) injection [teriparatide, recombinant human parathyroid hormone (1-34) [rhPTH(1-34)]] reduces the risk of vertebral and nonvertebral fragility fractures and increases cancellous bone mineral density in postmenopausal women with osteoporosis, but its effects on cortical bone are less well established. This cross-sectional study assessed parameters of cortical bone quality by peripheral quantitative computed tomography (pQCT) in the nondominant distal radius of 101 postmenopausal women with osteoporosis who were randomly allocated to once-daily, self-administered subcutaneous injections of placebo (n = 35) or teriparatide 20 microg (n = 38) or 40 microg (n = 28). We obtained measurements of moments of inertia, bone circumferences, bone mineral content, and bone area after a median of 18 months of treatment. The results were adjusted for age, height, and weight. Compared with placebo, patients treated with teriparatide 40 microg had significantly higher total bone mineral content, total and cortical bone areas, periosteal and endocortical circumferences, and axial and polar cross-sectional moments of inertia. Total bone mineral content, total and cortical bone areas, periosteal circumference, and polar cross-sectional moment of inertia were also significantly higher in the patients treated with teriparatide 20 microg compared with placebo. There were no differences in total bone mineral density, cortical thickness, cortical bone mineral density, or cortical bone mineral content among groups. In summary, once-daily administration of teriparatide induced beneficial changes in the structural architecture of the distal radial diaphysis consistent with increased mechanical strength without adverse effects on total bone mineral density or cortical bone mineral content.


Subject(s)
Bone and Bones/drug effects , Osteoporosis/drug therapy , Postmenopause , Teriparatide/pharmacology , Aged , Cross-Sectional Studies , Female , Humans , Middle Aged , Osteoporosis/physiopathology , Teriparatide/therapeutic use
16.
Growth Dev Aging ; 65(2): 67-72, 2002.
Article in English | MEDLINE | ID: mdl-11936277

ABSTRACT

Severe protein restriction during the post-weaning period in the rat markedly reduces femoral bone mass and produces a number of alterations in the shaft biomechanical properties. Body weight and femur length show an immediate and complete catch-up during nutritional rehabilitation. The aim of the present investigation was to assess whether the accelerated bone growth that occurs during protein rehabilitation is accompanied by recovery of cortical bone properties. The dynamics of the recovery of both material and geometric properties were thus evaluated on the femoral diaphyses in 45-day old female rats after a 10-day period of dietary protein restriction by peripheral quantitative computed tomography (pQCT). Protein starvation led to marked reduction of both body weight and femoral length (37% and 14% at day 10, respectively) which showed a complete catch-up after 30 d of protein refeeding. Protein restriction was associated with the interruption of the natural increase in cortical area (CtCSA), volumetric cortical bone mineral content (vCtBMC) and volumetric cortical bone mineral density (vCtBMD) which were 19.7, 25.8, and 14%, respectively, in malnourished than in control rats at the end of the protein starvation period. These parameters recovered completely during protein refeeding. Treatment also reduced by 30% both rectangular (xCSMI) and polar (pCSMI) moments of inertia. Although an improvement of these architectural indicators occurred with time, an approximately 20% deficit was still present at the end of the observation period (70 d), as was the bone strength index (BSI). It is concluded that protein restriction affected the adaptation of diaphyseal design which should reduce the mechanical competence of the femoral diaphysis because of an inadequate architectural distribution of cortical bone, and that the alteration did not show complete catch-up during the studied period.


Subject(s)
Aging/physiology , Diet, Protein-Restricted , Femur/diagnostic imaging , Femur/growth & development , Tomography, X-Ray Computed , Animals , Dietary Proteins/administration & dosage , Dietary Proteins/pharmacology , Female , Femur/drug effects , Rats , Rats, Sprague-Dawley , Time Factors
17.
Osteoporos Int ; 12(8): 639-46, 2001.
Article in English | MEDLINE | ID: mdl-11580077

ABSTRACT

The aim of this study was to test the ability of some indicators of different aspects of bone quality (assessed by peripheral quantitative computed tomography in the distal radius) to discriminate between fractured and nonfractured individuals. The study compared 214 women aged 45-85 years, free of any bone-affecting treatment, of whom 107 had suffered a Colles' fracture in the previous 6 months and 107 did not. The determinations included bone tissue or mineral 'mass' indicators (trabecular, cortical and total volumetric mineral content, cortical bone area); bone 'density' estimates (trabecular, cortical and total volumetric mineral density), and the Cartesian (rectangular) and polar moments of inertia as influences of cross-sectional architecture on resistance to bending and torsional loads, respectively. The influences of body height, weight and age on the tomographic indicators were minimized by adjusting the data according to the partial coefficients of multiple stepwise regressions. The adjusted values of all the indicators were lower in fractured than in nonfractured groups. The prevalence of fractures was directly related to the actual values of the indicators, rather than the age or body habitus of the individuals. The significance of these differences between the assessed indicators decreased in the following order: trabecular 'mass' > trabecular 'density' > cortical or total 'mass' > cortical architecture > total or cortical 'density' indicators. Within the same type of bone, the tissue or mineral 'mass' indicators performed better than the 'density' indicators. The cortical bone density did not give useful information, probably because of technical difficulties. Odds-ratios and receiver-operating characteristic (ROC) analyses confirmed those features. The selected 'cut-off' values of the indicators as determined by the ROC curves (very close to those determined by the inflexion points of the logistic reression curves) may indicate reference limits to detect persons at risk of fracture according to the type of information provided by each variable. These results show that these tomographic indicators discriminate well between fractured and nonfractured individuals, and should be suitable to assess how total, cortical and trabecular bone strength in the distal radius could affect different kinds of strength regardless of the age or body habitus of the individual. Their ability to estimate fracture risk from different biomechanical points of view should be assessed by adequately designed, prospective studies.


Subject(s)
Colles' Fracture/diagnostic imaging , Aged , Aged, 80 and over , Biomechanical Phenomena , Body Height , Body Weight , Bone Density , Case-Control Studies , Colles' Fracture/physiopathology , Female , Humans , Middle Aged , Predictive Value of Tests , Sensitivity and Specificity , Statistics as Topic , Tomography, X-Ray Computed/methods
18.
Biochemistry ; 40(40): 12004-12, 2001 Oct 09.
Article in English | MEDLINE | ID: mdl-11580276

ABSTRACT

The (15)N relaxation behavior and heteronuclear Overhauser effect data for the wild type and an H52R/T56W double mutant protein that encompasses the vnd/NK-2 homeodomain from Drosophila melanogaster were used to characterize and describe the protein backbone dynamics. This investigation, which includes a description of a model structure for the H52R/T56W double mutant vnd/NK-2 homeodomain, was carried out for the two proteins in both the free and DNA-bound states. The double residue replacement at positions 52 and 56 within the DNA recognition helix of vnd/NK-2 has been shown to lead to a significant secondary structural modification resulting in an increase in the length of the recognition helix for the unbound protein. These structural changes are accompanied by corresponding changes in the T(1) and T(1)(rho) relaxation times as well as in the heteronuclear Overhauser effect (XNOE) values that show that the structural stability of the protein is enhanced by the two residue replacements. The values of the rotational anisotropy, D(parallel)/D(perpendicular), derived from analysis of the (15)N T(1) and T(1)(rho) relaxation values are small (1.189 for the unbound homeodomain and 1.110 for the bound homeodomain; both analyzed as prolate ellipsoids of revolution). A comparison of the T(2) values of the wild type and double mutant homeodomain reveals the presence of a low-frequency exchange contribution for the wild type analogue. These relaxation studies show that the motional behavior of the protein primarily reflects the tertiary structure and stability of the homeodomain backbone as well as the respective changes induced upon site-directed residue replacement or DNA binding.


Subject(s)
Homeodomain Proteins/chemistry , Mutation , Animals , Drosophila Proteins , Drosophila melanogaster , Homeodomain Proteins/genetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Thermodynamics , Transcription Factors
19.
Virology ; 288(2): 325-41, 2001 Sep 30.
Article in English | MEDLINE | ID: mdl-11601904

ABSTRACT

The genome of the highly pathogenic M1 serotype Streptococcus pyogenes isolate SF370 contains eight prophage elements. Only prophage SF370.1 could be induced by mitomycin C treatment. Prophage SF370.3 showed a 33.5-kb-long genome that closely resembled the genome organization of the cos-site temperate Siphovirus r1t infecting the dairy bacterium Lactococcus lactis. The two-phage genomes shared between 60 and 70% nucleotide sequence identity over the DNA packaging, head and tail genes. Analysis of the SF370.3 genome revealed mutations in the replisome organizer gene that may prevent the induction of the prophage. The mutated phage replication gene was closely related to a virulence marker identified in recently emerged M3 serotype S. pyogenes strains in Japan. This observation suggests that prophage genes confer selective advantage to the lysogenic host. SF370.3 encodes a hyaluronidase and a DNase that may facilitate the spreading of S. pyogenes through tissue planes of its human host. Prophage SF370.2 showed a 43-kb-long genome that closely resembled the genome organization of pac-site temperate Siphoviridae infecting the dairy bacteria S. thermophilus and L. lactis. Over part of the structural genes, the similarity between SF370.2 and S. thermophilus phage O1205 extended to the nucleotide sequence level. SF370.2 showed two probable inactivating mutations: one in the replisome organizer gene and another in the gene encoding the portal protein. Prophage SF370.2 also encodes a hyaluronidase and in addition two very likely virulence factors: prophage-encoded toxins acting as superantigens that may contribute to the immune deregulation observed during invasive streptococcal infections. The superantigens are encoded between the phage lysin and the right attachment site of the prophage genome. The genes were nearly sequence identical with a DNA segment in S. equi, suggesting horizontal gene transfer. The trend for prophage genome inactivation was even more evident for the remaining five prophage sequences that showed massive losses of prophage DNA. In these prophage remnants only 13-0.3 kb of putative prophage DNA was detected. We discuss the genomics data from S. pyogenes strain SF370 within the framework of Darwinian coevolution of prophages and lysogenic bacteria and suggest elements of genetic cooperation and elements of an arms race in this host-parasite relationship.


Subject(s)
Bacteriophages/genetics , Evolution, Molecular , Genome, Viral , Lactococcus lactis/virology , Streptococcus Phages/genetics , Streptococcus pyogenes/virology , Lactococcus lactis/genetics , Streptococcus pyogenes/genetics
20.
J Protein Chem ; 20(3): 203-15, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11565900

ABSTRACT

To gain insight into the role of hydrophobic core-surface charge interactions in stabilizing cytochrome c, we investigated the influence of hydrophobic core residues on phosphate binding by mutating residues in yeast iso-2-cytochrome c to those corresponding to iso-l-cytochrome c in various combinations. Heat transition of ultraviolet CD was followed as a function of pH in the presence and absence of phosphate. Thermodynamic parameters were deduced. It was found that the I20V/V43A/M98L mutation in the hydrophobic core, whose locations are remote from the putative phosphate sites, modulates phosphate interactions. The modulation is pH dependent. The I20V/ M98L and V43A mutation effects are nonadditive. The results lead to a model analogous to that of Tsao, Evans, and Wennerstrom, where a domain associated with the ordered hydrophobic core is sensitive to the fields generated by the surface charges. Such an explanation would be in accord with the observed difference in thermal stability between iso-2 and horse cytochromes c.


Subject(s)
Cytochrome c Group/chemistry , Cytochromes c , Fungal Proteins/chemistry , Phosphates/metabolism , Yeasts/chemistry , Amino Acid Sequence , Animals , Circular Dichroism , Cytochrome c Group/genetics , Cytochrome c Group/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Mathematics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Tertiary , Surface Properties , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...